
Axisymmetric Constraints on Cross-Equatorial Hadley Cell Extent

SPENCER A. HILL

Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles,

and Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California

SIMONA BORDONI

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California

JONATHAN L. MITCHELL

Department of Earth, Planetary, and Space Sciences, and Department of Atmospheric and Oceanic Sciences,

University of California, Los Angeles, Los Angeles, California

(Manuscript received 11 October 2018, in final form 26 February 2019)

ABSTRACT

We consider the relevance of known constraints from each of Hide’s theorem, the angular momentum–

conserving (AMC) model, and the equal-area model on the extent of cross-equatorial Hadley cells. These

theories respectively posit that a Hadley circulation must span all latitudes where the radiative–convective

equilibrium (RCE) absolute angular momentum Mrce satisfies Mrce .Va2 or Mrce , 0 or where the RCE

absolute vorticity hrce satisfies fhrce , 0; all latitudes where theRCE zonal wind exceeds theAMC zonal wind;

and over a range such that depth-averaged potential temperature is continuous and that energy is conserved.

The AMC model requires knowledge of the ascent latitude ua, which needs not equal the RCE forcing

maximum latitudeum. Whatever the value of ua, we demonstrate that anAMC cell must extend at least as far

into the winter hemisphere as the summer hemisphere. The equal-area model predicts ua, always placing it

poleward of um. As um is moved poleward (at a given thermal Rossby number), the equal-area-predicted

Hadley circulation becomes implausibly large, while both um and ua become increasingly displaced poleward

of the minimal cell extent based on Hide’s theorem (i.e., of supercritical forcing). In an idealized dry general

circulation model, cross-equatorial Hadley cells are generated, some spanning nearly pole to pole. All ho-

mogenize angular momentum imperfectly, are roughly symmetric in extent about the equator, and appear in

extent controlled by the span of supercritical forcing.

1. Introduction

Except during equinox, insolation always has a nonzero

meridional derivative spanning the equator, precluding a

state of latitude-by-latitude radiative–convective equilib-

rium (RCE). The resulting thermal- or gradient-balanced

wind would asymptotically approach 1‘ on the winter

side of the equator and 2‘ on the summer side. An

overturning circulation must emerge that removes this

physically impossible feature by redistributing heat

and angular momentum. The resulting solstitial cross-

equatorial Hadley cells in our solar system, however,

differ dramatically in scale—ascending at relatively low

latitudes in the summer hemisphere on Earth versus

nearly at the summer pole on Venus (Gierasch 1975)

and Titan (Mitchell and Lora 2016). Nevertheless, each

spans at least as far into the winter hemisphere as the

summer hemisphere. This paper seeks minimal, prog-

nostic, qualitatively accurate theoretical arguments that

account for these features.

The inviability of gradient balance at the equator is

onemanifestation of the well-knownHide’s theorem—a

set of conditions determining if the distributions of ab-

solute angular momentum Mrce and absolute vorticity

hrce in the hypothetical RCE state are physically re-

alizable (Hide 1969; Schneider 1977). Any latitude

where the RCE state violates the conditions of Hide’s

theorem is said to be supercritically forced, and an

overturning circulation must span at minimum all su-

percritical latitudes. Of particular note is the conditionCorresponding author: Spencer Hill, shill@atmos.ucla.edu
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(expanded upon below) that the RCE absolute vorticity

cannot take the opposite sign of the local Coriolis pa-

rameter: fhrce , 0 is forbidden (Plumb and Hou 1992,

hereafter PH92; Emanuel 1995, hereafter E95), making

the poleward extent of supercritical forcing in the sum-

mer hemisphere bounded by the latitude where hrce 5 0

in most cases.

In axisymmetric atmospheres in which viscosity is

weak above the boundary layer, the cross-equatorial

Hadley cell is usefully described by the angular

momentum–conserving (AMC) model. In this frame-

work, ascent concentrated at a single latitude ua imparts

that latitude’s planetary angular momentum to the free

troposphere, which the Hadley circulation then homoge-

nizes throughout its confines (Held and Hou 1980, here-

afterHH80; Lindzen andHou 1988, hereafter LH88);ua is

also the boundary separating the cross-equatorial cell

and the smaller summer cell. To satisfy Hide’s theorem,

such anAMC circulationmust span all latitudes wherein

the angular momentum value of the RCE state exceeds

the AMC value.

A well-known theory for ua in an AMC Hadley circu-

lation comes from the equal-area model, which assumes

Newtonian relaxation of temperatures toward a specified

RCE distribution, continuity of column-integrated

temperature at each cell edge, and conservation of en-

ergy integrated over each cell. Given these, it predicts

ua as well as the poleward edges of both the cross-

equatorial winter cell and the summer cell and the

column-integrated temperature at ua (HH80; LH88).

The equal-area solution for the cross-equatorial Had-

ley cell grows rapidly as the latitude of the RCE ther-

mal maximum um is moved poleward. For the largest

value shown by LH88, um ’ 88, the cross-equatorial

cell spans ;458S–288N or ;418S–238N depending on

the value of the imposed fractional meridional equi-

librium temperature drop factor (Dh 5 1/3 or 1/6, re-

spectively; cf. their Fig. 4). In addition, it always predicts

ua $um and is agnostic to the extent of supercritical

forcing.

Yet, under solstitial forcing, insolation maximizes

at the summer pole, and thus the effective RCE um

should also. Faulk et al. (2017) and Singh (2019) perform

perpetual solstitial forcing simulations in an ideal-

ized aquaplanet GCM, finding that the resulting cross-

equatorial cell is confined to the tropics, as on Earth,

unless the rotation rate is decreased. These studies also

demonstrate that the latitude at which hrce 5 0 predicts

ua with qualitative accuracy both at Earth’s rotation

rate (Faulk et al. 2017) and as the rotation rate is varied

over a wide range (Singh 2019). Moreover, while the

traditional AMC model dictates that the circulation

and column-integrated equivalent potential temperature

ûe fields mutually evolve such that ua coincides with a

local maximum in ûe (LH88; E95; Privé and Plumb

2007), in the Faulk et al. and Singh simulations the

near-surface moist static energy (a good indicator of

ûe) always maximizes at the summer pole—nearly a

hemisphere away from ua in the highest-rotation-rate

cases.

In what follows, we demonstrate using a dry, axi-

symmetric GCM that the hrce 5 0 latitude predicts ua

with qualitative accuracy—and the equal-area model

does not—both under conventional forcings and in exoti-

cally forced cases that generate planetary-scale Hadley

circulations while remaining at Earth’s rotation rate.We

also show without appeal to the equal-area model that a

cross-equatorial AMC cell must extend as far or farther

into the winter hemisphere as into the summer hemi-

sphere. Hide’s theorem is reviewed and its various pre-

vious manifestations are synthesized in section 2. Section 3

reviews AMC theory and the equal-area model and

compares their predictions for the cross-equatorial cell’s

edges with those stemming directly from Hide’s theorem.

Section 4 presents the results of the numerical simulations,

after which we conclude with a summary and discussion in

sections 5 and 6, respectively.

Before proceeding, we note that, even in axisymmet-

ric cases where the complicating factors of eddy stresses

can be neglected, simulated Hadley cells never truly

approach the AMC limit (HH80; LH88; Adam and

Paldor 2009). In eddying atmospheres, the AMC as-

sumption becomes even more problematic, although

in observations and simulations the solstitial, cross-

equatorial cell is more nearly AMC than are the sum-

mer, equinoctial, or annual-mean cells (e.g., Schneider

2006). We expand upon these and other caveats, including

the complicating effects of moisture, in concluding sub-

sections within sections 2 and 3. Additional subtleties

discussed in footnotes and the appendixes may be

skipped by casual readers. We otherwise proceed using

the original dry, axisymmetric framework.

2. Hide’s theorem

After presenting the governing equations, this section

reviews fundamental properties of the gradient-balanced

RCE state, synthesizes the various forms Hide’s theorem

has taken in past literature, and notes some important

caveats.

We consider dry, axisymmetric, Boussinesq atmo-

spheres under time-invariant radiative forcing, with

radiative transfer represented as Newtonian cooling of

potential temperature u toward an RCE potential tem-

perature field urce that is known analytically. The cor-

responding governing equations are
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Here, v5 (y, w) with y the meridional velocity andw the

vertical velocity, u is zonal velocity, f 5 2V sinu is the

Coriolis parameter with V the planetary rotation rate

and u latitude, a is planetary radius, n is the kinematic

viscosity, F5 gz is geopotential height, t is the New-

tonian cooling time scale, u0 is the Boussinesq reference

potential temperature, and other terms have their

standard meaning. Note that the Boussinesq equations

are isomorphic to the fully compressible equations in

pressure coordinates (e.g., Vallis 2017).

a. Gradient wind balance in radiative–convective
equilibrium

By definition, latitude-by-latitude RCE requires

y5w5 0, in which case combining the meridional mo-

mentum and hydrostatic balance equations [(1b) and

(1e)] leads to RCE zonal wind and potential temper-

atures (urce and urce, respectively) in gradient wind

balance:

›
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Assuming drag in the boundary layer is large enough

that the surface zonal wind is negligible,1 the integral of

(2a) from the surface to some height z yields

tanu
a

u2
rce(z)1 fu

rce
(z)1

gz

au
0

›û
rce

›u
5 0, (2b)

where û is the average of u between the surface and z.

Equation (2b) is a quadratic equation for urce that can

be solved directly. Choosing the positive root that

corresponds to urce 5 0 at the surface as required,

this is

u
rce

5Va cosu
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Away from the equator, if ›uûrce 5 0, then urce 5 0. At

the equator, if ›uûrce 5 0, then limu/0urce is indetermi-

nate. L’Hôpital’s rule then gives

u
rce
(u5 0, ›uûrce 5 0)5Va
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Accordingly, any equatorial maximum in potential tem-

perature with nonzero second derivative generates equa-

torial westerlies.2

b. Hide’s theorem: Existing forms and synthesis

Provided n 6¼ 0 and that the effect of transients is

negligible, in steady state the zonal momentum equation

[(1a)] may be written

v � =M5
›

›z

�
n
›M

›z

�
, (4)

where M5 a cosu(Va cosu1 u) is absolute angular

momentum per unit mass, and recall that all values are

steady-state averages. Equation (4) precludes isolated

extrema in M. Mathematically, at any such an extre-

mum, =M5 0, so that the left-hand side of (4) must

vanish but not the right-hand side. Physically, viscous dif-

fusion that acts to flatten out the extremum would have to

be balanced by momentum flux convergence for a maxi-

mum (divergence for a minimum), which would require

time-meanmass convergence (divergence for aminimum),

violating conservation of mass (see appendix A of PH92

for a formal proof). Only at the surface, where frictional

stress can balance the diffusive term, can an extremum

occur. In particular, the extremal values of planetary an-

gular momentum (M5Va2 at the equator and M5 0 at

either pole) must bound M at all latitudes.

1More formally, assuming lower boundary conditions of n›zu5
Cu and n›zy5Cy, where C is a constant drag coefficient; cf. (3)

of HH80.

2 If the second derivative is also zero, zonal flow at the equator

will remain zero (as is the case for the AMC solutions described

below), but this is unlikely for theRCE state in the annualmean for

Earth-like orbits [as argued more formally by Schneider (2006)].

Flatter annual-mean profiles become more relevant for planets

with larger orbital obliquities (with the poles receiving more

annual-mean insolation than the equator for orbits with obliquities

*558; e.g., Linsenmeier et al. 2015), although in those cases the

annual-mean Hadley cells are likely the small residual of very

strong, seasonally reversing cells that rarely approach cross-

equatorial symmetry.
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Early expressions of Hide’s theorem amount to the

application of this result to maxima in the angular mo-

mentum field of the hypothetical RCE state Mrce;

namely, if Mrce .Va2 away from the surface at any

latitude, a Hadley circulation must emerge (Hide 1969;

Schneider 1977). It follows from (3a) and (3b) that any

nonzero first or second meridional derivative in ûrce at

the equator is supercritical. By the same arguments ap-

plied to an angular momentum minima, Mrce , 0 is also

forbidden, but interestingly negative angular momen-

tum values are also forbidden for another reason: a real-

valued solution to (3a) does not exist if the quantity

within the square root operator is negative, and the

minimum real solution is urce 52Va cosu, which yields

Mrce 5 0 at all latitudes (Fang and Tung 1996; Adam and

Paldor 2009).

Away from the equator, local absolute angular

momentum extrema are readily identified from the

absolute vorticity distribution. The meridional de-

rivative of absolute angular momentum is propor-

tional to the vertical component of absolute vorticity

h. Specifically, ›uM52(a2 cosu)h, where h5 f 1 z,

with z52(a cosu)21
›u(u cosu) the relative vorticity

(h is referred to without confusion as absolute vorticity).

Accordingly, hrce 5 0 at any local extremum in Mrce.

Because h5 f in the absence of flow, this vorticity-based

sufficient condition for supercriticality may be com-

pactly expressed as fhrce , 0 (PH92; E95).

Figure 1 visualizes this fhrce , 0 condition by showing

the potential temperature, zonal wind, angular momen-

tum, and absolute vorticity fields corresponding to the

depth-averaged forcing of PH92 [their (9)], which

comprises uniform ûrce everywhere except for a local

maximum centered at 258N dropping off as cos2u in a

308-wide region, for successively larger values of the

forcing maximum. With no maximum present (dashed

black curves), urce 5 0 everywhere, and Mrce and hrce

take their planetary values. Introducing a weak forcing

maximum (blue curves) generates easterlies on the maxi-

mum’s equatorward side and westerlies on the poleward

side. The easterlies bend down, and the westerlies bend

up, theMrce curve, but not enough to generate any extrema

in Mrce: hrce retains its original sign everywhere, and the

forcing is subcritical. Increasing the magnitude of the

forcing maximum causes the easterlies and westerlies to

intensify, eventually enough to generate hrce 5 0 at a

point slightly equatorward of um (gray curves). A forc-

ing maximum that is any stronger is supercritical (red

curves). The Mrce curve shows a minimum equatorward

and a maximum poleward of um, between which hrce has

changed sign.

E95 shows that the fhrce , 0 condition also applies at the

tropopause in nonaxisymmetric and/or purely inviscid

FIG. 1. RCE profiles corresponding to the forcing used by PH92

[their (9)], which comprises uniform ûrce at all latitudes other than a

‘‘bump’’ centered on 258N (vertical gray dotted line) and 308 wide,
of (a) column-averaged potential temperature (K), (b) zonal wind

(m s21), (c) absolute angular momentum normalized by the plan-

etary angular momentum at the equator, and (d) absolute vorticity

normalized by twice the planetary rotation rate, for different

magnitudes of the forcing maximum as indicated by the legend in

(a). The horizontal dotted gray line in (d) marks the zero line.
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atmospheres, the derivation of which is provided in

appendix A along with two additional physical

interpretations.

The fhrce , 0 condition may be expressed in terms of

ûrce as (cf. PH92)

C
PH92

5 4V2a2 cos3u sinu1
gH

u
0

›

›u

 
cos3u
sinu

›û
rce

›u

!
. (5)

Here, CPH92 . 0 corresponds to supercritical forcing in the

Northern Hemisphere and subcritical forcing in the South-

ern Hemisphere (signs that are the same as for hrce itself).

Note that this can be reexpressed in terms of the planetary

Burger number (gH/V2a2) by dividing both sides by (Va)2.

In summary, any latitude in an axisymmetric atmo-

sphere with nonzero free-tropospheric viscosity that sat-

isfies any of the following three conditions is supercritical:

1) Mrce .Va2 (global maximum in Mrce)

2) Mrce , 0 (global minimum in Mrce and complex-

valued urce)

3) fhrce , 0 (local extrema inMrce and unrealizable sign

change in hrce)

And Hide’s theorem states that the existence of any su-

percritical latitude makes the RCE state physically im-

possible, meaning that a Hadley circulation must emerge.

c. Caveats

We are utilizing the thin-shell limit, wherein vertical

variations in the moment arm are taken as negligible

compared to meridional variations. This is appropriate

for terrestrial bodies but not the gas giants. See, for

example, O’Neill and Kaspi (2016) for consideration of

angular momentum dynamics in deep atmospheres.

Neglected in (4) is the divergence of eddy momentum

fluxes, = �M0v0, where primes denote deviations from

the time mean and the overbar a temporal average. In

nonaxisymmetric atmospheres, zonally asymmetric eddies

can generate interior extrema in the angular momentum

field, the most notorious example being a westerly,

‘‘superrotating’’ jet in the equatorial troposphere,

through a variety of mechanisms (e.g., Schneider and

Liu 2009; Caballero andHuber 2010;Mitchell and Vallis

2010; Wang and Mitchell 2014). In simulations of axi-

symmetric atmospheres (including those we present in

section 4), propagating symmetric instabilities are

ubiquitous (e.g., Satoh 1994) and can, in principle, effect

nontrivial momentum flux divergences.

Another striking example of the influence of eddy mo-

mentum flux divergences is the emergence of Hadley cells

in simulations with uniform insolation and other boundary

conditions, which by the axisymmetric arguments we

presented should have urce 5 0 everywhere and thus no

Hadley circulation; instead, transient eddies (both in

axisymmetric and zonally varying simulations) transport

momentum meridionally, necessitating compensating

Hadley cell angular momentum transports to attain a

balanced budget (e.g., Kirtman and Schneider 2000; Shi

and Bretherton 2014; Merlis et al. 2016).

We lack at present a satisfying explanation for the

coincidence of the Mrce , 0 manifestation of Hide’s

theorem (which derives from the zonal momentum

equation) with the transition to nonreal values of the

gradient-balanced wind (which derives from the continu-

ity, hydrostatic, and meridional momentum equations). In

contrast, the urce value corresponding to the Mrce 5Va2

condition does not coincide with any mathematically

unique property of urce.

3. Hadley cell extent and ascent branch location

Supposing that one ormore of the conditions atHide’s

theorem is met somewhere, over what latitudes does the

resulting overturning circulation extend, andwhere does

it ascend? This section considers a series of arguments

yielding progressively farther-poleward predictions: those

stemming directly from Hide’s theorem, from the AMC

model, and from the equal-area model. We consider each

for general ûrce profiles and as applied to the canonical ûrce
profiles of LH88,

û
rce,LH88

u
0

5 11
D
h

3
[12 3(sinu2 sinu

m
)2] , (6)

where Dh is an imposed fractional equator-to-pole

temperature contrast, and the forcing maximizes at the

latitude um. Using (6) in (3a), the corresponding urce

fields are

u
rce,LH88

5Va cosu

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 2R

�
12

sinu
m

sinu

�s
2 1

#
, (7)

where

R5
gHD

h

V2a2

is the thermal Rossby number (Fang and Tung 1996;

Adam and Paldor 2009). For um 5 08, (6) and (7) reduce

to the original expressions of HH80.

a. Constraints from Hide’s theorem

At the very least, the Hadley circulation must span all

latitudes satisfying one or more of the conditions of Hide’s

theorem. But this lower bound in not always especially

useful, for example, in the PH92 case. Compare Fig. 1,
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where forcing is supercritical only within ;188–268N,

whereas the corresponding PH92 simulation features a

Hadley circulation spanning;258S–308N (cf. their Fig. 5a;

their forcing is slightly stronger, yielding a slightly larger

supercritical region of ;128–298N).

Under the HH80 forcing, neither the Mrce , 0 nor

fhrce , 0 criteria are met at any latitude. This is dem-

onstrated by the solid red curves in Fig. 2, which show

(Fig. 2a) ûrce, (Fig. 2b) urce, (Fig. 2c)Mrce, and (Fig. 2d) hrce

for (6) withum 5 08, with Earth’s values of g,V, and a,H5
10km, and Dh 5 1/3, yielding R’ 0:15 [the other plotted

elements will be discussed further below]. The values of urce

and Mrce are maximal at the equator and decrease mono-

tonically toward zero at either pole; the resultingmeridional

shearmakes fhrce more positive than it would be in a resting

atmosphere (shown as the pink dashed curve in Fig. 2d).3

For the LH88 forcing, Fig. 3 repeats Fig. 2 but with

um 5 68. Westerlies are sufficiently strong from the

winter subtropics to the equator and in the;108-wide span
just poleward of um to generate Mrce .Va2 (unlike the

HH80 case, this span is not identical to that from theAMC

criteria, as discussed below). Moving across the equator

toward the summer pole, ›uûrce . 0 causes urce to flip to

nonreal values, though only very near the equator. But the

meridional shear is sufficiently large poleward thereof to

generate an fhrce , 0 region spanning another;108. These
spans are indicated by the three lowermost horizontal lines

at the top of Fig. 3a as indicated by the legend (likewise for

Fig. 2 but with the unsatisfied Mrce , 0 and fhrce , 0 con-

ditions omitted). A formal treatment of the h5 0 transi-

tion under LH88 forcing is provided in appendix B.

Figure 4 repeats Fig. 3a but with um 5 23:58. Now, the

hrce 5 0 transition in the summer hemisphere occurs at

18.08, equatorward of um. As um is moved farther

poleward, hrce 5 0 becomes increasingly equatorward of

um; for example, for um 5 308, the hrce 5 0 point occurs

at ;208 (not shown).

b. Constraints from the AMC Hadley cell model

1) CONCEPTUAL BASIS FOR THE AMC HADLEY

CELL MODEL

The AMC model for the Hadley cells (HH80; LH88)

assumes that ascent out of the boundary layer occurs
FIG. 2. Values of (a) column-averaged potential temperature

(K), (b) zonal wind (m s21), (c) absolute angular momentum nor-

malized by Va2, and (d) absolute vorticity normalized by 2V, each

corresponding to the RCE state (solid red), the AMC solution (solid

blue), the equal-area solution (dotted purple), and the planetary value

[dashed pink; (c) and (d) only], as a function of latitude (horizontal

axis, with sinu spacing), where the RCE forcing is given by (6) with

um 5 0. Horizontal lines at the top of (a) signify Hadley cell extent

markers according to the legend in (a), with the three black dots

corresponding to the cell edges of the equal-area solution.

3 This in fact holds for the more general forcing of

ûrce/u0 5 c1 1 c2 cos
nu, where c1 and c2 are constants and n$ 2 is a

positive integer [of which (6) with um 5 08 is a special case with

c1 5 12 2Dh/3, c2 5Dh, and n5 2]. Applying (5) to this yields

CPH92,cosnu 52sinu cos3u[4V2a2 1n(n1 2)c2gH cosn22u]. All of

the terms within the square brackets are positive, which combined

with the leading2sinu term corresponds to fhrce $ 0 at all latitudes.
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at a single latitude ua where u’ 0 and hence

M(u5ua)5Va2 cos2ua. Because viscosity is weak in

the free troposphere, this angular momentum value

is then homogenized over the circulation’s whole

expanse, requiring the AMC zonal wind profile (cf.

LH88):

u
amc

5Va cosu

�
cos2u

a

cos2u
2 1

�
. (8)

The blue curves in Figs. 2b and 3b show uamc for ua 5 08
and ua 5 21:28N, respectively (with ua determined using

the equal-area model as discussed below). For any ua,

uamc vanishes at ua, is mirror symmetric about the

equator, and increases monotonically toward either pole

from a minimum value at the equator, approaching 1‘
at the poles unless ua itself is one of the poles. For

ua 6¼ 08, uamc is also zero at 2ua, easterly between 2ua

and ua, and westerly poleward thereof. Blue curves in

Figs. 2c, 2d, 3c, and 3d show that M is indeed constant

and thus h5 0 when u5 uamc.

The troposphere-averaged potential temperature field

of the AMC circulation ûamc is in gradient balance with

uamc. The ua 5 08 case was solved by HH80 and was

generalized to ua 6¼ 08 by LH88. The latter is

û(u)2 û
a

u
0

52
V2a2

2gH

(cos2u
a
2 cos2u)2

cos2u
, (9)

where ûa is the value of û at ua. Blue curves in Figs. 2a

and 3a show these for ua 5 08 and ua 5 21:28 (with ûamc

determined from the equal-area model). In both cases,

ua corresponds to a local thermal maximum, since then

u5 0 throughout the column as assumed in deriving uamc

and, in turn, (9). But importantly, it does not follow that

ua 5um.

2) DIRECT urce VERSUS uamc COMPARISON

The AMC model is made globally complete by

jumping at the Hadley circulation outer edges from the

AMC to the RCE profile. This is shown in the dotted

purple curves of Figs. 2 and 3 (again with the cell edge

latitudes determined using the equal-area model). The

jump from uamc to urce at the cell outer edges must occur

FIG. 3. As in Fig. 2, but with the RCE forcing given by (6) with

um 5 68, and (a) with two additional cell extent metrics, as noted in

the legend (neither was met at any latitude in the um 5 08 case).
Note that, except for (d), the vertical axis spans differ from the

corresponding ones of Fig. 2.

FIG. 4. As in Fig. 3a, but with um 5 23:58.
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where urce # uamc, as a cell terminating where urce . uamc

would yield an isolated local maximum inMrce at the cell

edge, thereby still violatingHide’s theorem—that is, if in

Fig. 2c or Fig. 3c the jump from the AMC to RCE curves

was upward. It follows that the span between the two

urce 5 uamc points farthest from each other constitutes a

lower bound on the circulation extent (HH80).

For ua 5 08, equating (7) with (8) yields u*5
arccos[(11 2R)21/4], where u* is the cell edge, or

equivalently u*5 arctan([(11 2R)1/2 2 1]1/2) as ex-

pressed by HH80. For ua 6¼ 08, uamc 5 0 at both ua and

2ua. Provided ûrce decreases monotonically from the

equator to the winter pole (however modestly), then

urce . 0 throughout the winter hemisphere. It follows

that urce . uamc from the equator to some latitude pole-

ward of2ua. Even if the meridional slope of ûrce vanishes

in the winter hemisphere (as it does in the simulations we

present in section 4), then urce 5 0, which is still more

westerly than the AMC easterlies spanning from the

equator to2ua. In short, anAMCcellmust span at least as

far into the winter hemisphere as the summer hemisphere.

c. Equal-area solutions

Using the AMC model prognostically requires a the-

ory for ua given the RCE state. As noted above, it is not

generally the case that ua ’um. Even for um 5 08, off-
equatorial, double ITCZs can emerge in numerical

simulations such that ua 6¼ 08 (e.g., Satoh 1994).

The equal-area model (introduced by HH80 for

um 5ua 5 08 and extended to um 6¼ 08, ua 6¼ 08 by LH88)

predicts ua, ûamc, and the circulation’s two poleward

edges via two assumptions regarding the thermody-

namic structure of the cells. First, column-averaged

potential temperature is continuous at each cell edge;

second, flow within each cell conserves energy. If ûrce is

symmetric about the equator and ua 5 08, the two cells

are mirror symmetric, yielding two equations to solve

for the two unknowns. See (8)–(11) of LH88.

In the small-angle limit, the HH80 equal-area solution

terminates at uH 5 (5R/3)1/2, a factor of (5/3)1/2 pole-

ward of where urce 5 uamc. Without the small-angle as-

sumption, an analytical solution is no longer attainable,

but the resulting expression [(17) of HH80] is readily

solvable numerically and always yields a cell terminating

poleward of the urce 5 uamc line.

Purple dotted curves in Figs. 2–4 show the equal-area

solutions for the given forcing. Also overlaid as gray

horizontal lines are the spans of the various extent

metrics—from the equal-area solution (with dots de-

noting the three cell edges), urce . uamc with the ua value

taken from the equal-area model, and the conditions of

Hide’s theorem. In the HH80 case (Fig. 2), because

ua 5 08, the M value being homogenized by uamc is the

equatorial value,M5Va2, such that theMrce .Va2 and

urce . uamc criteria are identical. The fhrce , 0 and

Mrce , 0 conditions are omitted, because they do not

occur at any latitude as described above.

In the LH88 case with um 5 68 (Fig. 3), because

um 6¼ 08, urce is no longer symmetric about the equator,

and now regions ofMrce , 0 and fhrce , 0 emerge in the

summer hemisphere. In addition, ua 6¼um, such that the

urce . uamc and M.Va2 spans are no longer identical,

with the former yielding a larger minimum circulation

extent, and the value of M being homogenized depends

on the solution for ua. Notice that the equal-area ua

prediction is appreciably poleward of um and of the

hrce 5 0 transition.

For um 5 23:58 (Fig. 4), the equal-area model

predicts a circulation spanning 61.78S–44.88N—implau-

sibly large for Earth, despite all parameters taking

Earth-like values and um sitting far equatorward of

where it would for a true solstitial RCE solution, namely

at the summer pole. And asum is moved farther poleward,

the separation between um and the equal-area ua con-

tinues to grow. Although the equal-area solution never

truly becomes pole to pole at Earth’s rotation rate

(Guendelman andKaspi 2018), these properties are clearly

inadequate for Earth’s solstitial Hadley circulation.

d. Caveats

Hide’s theorem holds for any nonzero viscosity, and in

atmospheres with sufficiently large n, the appropriate

model of the Hadley cells is the viscous, linear one

(Schneider and Lindzen 1977; Fang and Tung 1994). But

as a model for most terrestrial planets including Earth, the

nearly inviscid, angular momentum–conserving model is

more appropriate; see Fang and Tung (1994) for a formal

treatment of this regime separation based on the relative

values of the Ekman and Rossby numbers. And the non-

linear, nearly inviscid solution is not equal to the linear,

viscous solution in the limit as n/ 01 (HH80).

On Earth, baroclinic eddies modulate the Hadley

cells’ extent and overturning strength (e.g., Walker and

Schneider 2005; Korty and Schneider 2008; Levine and

Schneider 2015; Singh and Kuang 2016; Singh et al.

2017) and decelerate the zonal wind of the annual-mean

Hadley cells well below the AMC limit (Held and

Hoskins 1985; Walker and Schneider 2006). Neverthe-

less, large expanses of cross-equatorial, zonally confined

monsoons and zonal-mean Hadley cells during solstitial

seasons do approximately behave as in the AMC re-

gime, with local Rossby numbers Ro[2z/f ; 0:6

compared to Ro5 1 for the true AMC solution and

Ro5 0 for the purely eddy-dominated case (e.g.,

Schneider and Bordoni 2008; Bordoni and Schneider

2008, 2010). Accordingly, axisymmetric theory (in its
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modern ‘‘convective quasi equilibrium’’ form appropri-

ate for moist, convecting atmospheres; cf. E95) remains

of value in—and is the dominant existing theoretical par-

adigm for—these contexts (e.g., Nie et al. 2010). The

importance of baroclinic eddies diminishes as either

planetary rotation rate or radius decrease, leading to a

‘‘global tropics’’ regime once the Rossby radius of de-

formation exceeds the planetary scale (Williams and

Holloway 1982; Mitchell et al. 2006; Faulk et al. 2017). In

addition to the solar system’s slow rotators of Venus and

Titan, in all likelihood this characterizes many ‘‘habitable

zone’’ exoplanets identified already or likely to be identi-

fiable by existing and planned telescope missions, due to

orbital dynamical constraints (e.g., Showman et al. 2014).

Even in axisymmetric atmospheres, multiple pro-

cesses prevent the Hadley cells from ever actually

reaching the AMC limit, as has been noted by many

authors (e.g., HH80; LH88). Ascent always occurs over

some finite latitudinal width, leading to different

streamlines leaving the boundary layer with differentM

values. Within the ascending branch, convective mo-

mentum mixing may be nonnegligible (Schneider and

Lindzen 1977; Schneider 1977), although typically weak

vertical shear there makes it not obviously a large term

(cf. Held and Hoskins 1985; Zheng 1998). Once beyond

the ascending branch, nonzero viscosity, however small,

then generates mixing across tightly packed horizontal

streamlines in the cell’s upper branch where ›zu is large

and in the descending branch. Fang and Tung (1996)

derive an analytic ‘‘viscous correction’’ to their other-

wise inviscid solution that accounts for this, which acts to

smear out the otherwise step changes in temperature

and zonal velocity at their cell edges (see their Fig. 4).

Separately, motionless air advected into the upper

branch retards the upper-level flow, and this has been

compactly addressed in the ‘‘1.5’’-layer shallow-water

models of Shell and Held (2004) and Adam and Paldor

(2009). These yield an equinoctial Hadley cell with

nearly uniform height in the ascending branch con-

nected to an AMC subsiding branch, and arguably they

more accurately capture the momentum structure of the

HH80 numerical solutions than does the standard AMC

solution. Moreover, the circulation in this 1.5-layer

model spans farther into the winter hemisphere than

the summer hemisphere (Adam and Paldor 2010), as in

the unmodified AMC model as described above.

4. Results from sub- and supercritically forced
simulations

We have argued that the span of supercritical forcing

is a lower bound on the cross-equatorial cell extent in the

summer hemisphere, and that cross-equatorial, AMC cells

are bound to be relatively symmetric in extent about the

equator. This section presents evidence for those claims via

simulations in an idealized GCM in which hrce 5 0 is made

to occur either near um or well equatorward thereof.

a. Description of the idealized dry GCM

We use the dry idealized GCM of Schneider (2004),

which solves the primitive equations on the sphere with

no topography using a spectral dynamical core.4 All

parameters take Earth-like values except as otherwise

noted. The simulations are axisymmetric by way of exactly

axisymmetric initial conditions and boundary conditions.

Convective adjustment relaxes temperatures in stati-

cally unstable columns toward the dry adiabatic lapse rate,

Gd [ g/cp, as would hold in a state of dry RCE, over a

globally uniform 4-day time scale. Radiative transfer is

approximated by Newtonian cooling, wherein tempera-

tures are relaxed toward a prescribed field (described in

the next subsection) over a time scale that is 50 days

throughout the free troposphere and decreases linearly in

s from that value at the PBL top to 7 days at the surface.

The treatment of dissipative processes is standard, but

given the potential nuances relating to the nearly inviscid

assumptions, is described in full in appendix C.

b. Imposed RCE temperature profiles

The equilibrium temperature fields at the lowest

model level (which we refer to as the surface values) are

based on (9), modified as described below, with a dry

adiabatic lapse rate from the surface to a specified tro-

popause temperature. The atmosphere is isothermal

from the tropopause upward. The dry adiabatic strati-

fication, along with the dry adiabatic convective ad-

justment, ensures little distinction between the imposed

equilibrium temperatures and a true RCE solution. This

is confirmed via computingRCE solutions for a subset of

our cases by repeating them with all advective terms

suppressed (not shown); the temperature structure is

always almost exactly dry adiabatic from the surface to

the tropopause.

Because our model is not Boussinesq, rather than

using (9) we use the analogous expression derived by E95

appropriate for (dry or moist) atmospheres obeying con-

vective quasi equilibrium (CQE; Emanuel et al. 1994):

u
b
5 u

ba
exp

"
2

V2a2

2c
p
(T

s
2T

t
)

(cos2u
a
2 cos2u)2

cos2u

#
, (10)

4As noted by Adam and Paldor (2009), spectral solvers are not

ideal for cases such as the axisymmetric Hadley cells in which the

solutions are expected to have discontinuities.
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where ub is boundary layer potential temperature (re-

placed in moist atmospheres by ueb, the subcloud equiva-

lent potential temperature), uba is the value of ub at ua, Ts

is the surface temperature, Tt is the temperature at the

tropopause, and Ts 2Tt, has been assumed constant. Al-

though (10) is an expression for the dynamically equili-

brated AMC state, here we use it (modified as described

below) as the RCE state toward which the model is being

relaxed. Therefore, in the context of these simulations

only, it should be interpreted as a forcing, withua replaced

by um; the simulations will generate their own ua that in

general need not be the same as the imposed um.

To generate cells that extend either to the vicinity of

um or well equatorward thereof, we insert a multiplicative

factor a into the exponential, set to 0.5 or 2.0, respectively.

Temperatures are uniform beginning 108 past the forc-

ing maximum um, since otherwise except for um 5 908
the profile would drop toward absolute zero. To break

hemispheric symmetry, at 108N we switch from the

original profile to its local tangent, following this to 108S,
and then setting temperatures uniformly to their value at

108S farther south.

c. Simulations performed

We perform one a5 0:5 and one a5 2:0 simulation

for each of um 5 23.58, 458, and 908 and for each of

V5 13VE, (1/2)3VE, and (1/4)3VE, whereVE is

Earth’s rotation rate. Table 1 lists the forcing parame-

ters for each simulation, and Fig. 5 shows the imposed

equilibrium surface temperature profiles, as well as the

spans where the fhrce , 0, Mrce , 0, and Mrce .Va2

conditions for cell extent are met. The linear increase in

temperature spanning the equator in all cases ensures

Mrce .Va2 on the winter side of the equator andMrce , 0

on the summer side. In the a5 2:0, um 5 908 cases, the
Mrce , 0 region extends all the way to the pole. In all

other cases, poleward of the Mrce , 0 region there

exists a finite region where fhrce , 0 in the summer

hemisphere. The combined range of these extent condi-

tions spans ;108S–108N in the a5 0:5 cases (i.e., those

latitudes with the linear temperature profile), compared to

um or somewhat poleward thereof in the a5 2:0 cases.

Parameter values were chosen on an ad hoc basis for

each (V, um) pair in order to generate supercritical

forcing from the equator to um in the a5 2:0 case with

the minimal meridional temperature variation possible,

and with surface temperatures near the equator;300K

in all cases (so that the tropospheric depth is similar

across simulations, at least away from um). For forcing

maxima well removed from the tropics at Earth’s rota-

tion rate, it is difficult to generate fhrce , 0 nearum while

keeping a realistic tropopause depth. For this reason, the

tropopause is set to 100K in our forcing profiles in some

of the 13VE cases, in which the forcing surface tem-

perature at the maximum can exceed 500K. Under dry

adiabatic stratification, this yields an effective tropo-

pause height of ;40km. Stated another way, if we re-

quire that the tropospheric depth remains roughly

Earth-like, we are unable to violate Hide’s theorem near

um at Earth’s rotation rate or faster for high-latitude um.

Table 1 also lists diagnosed values of Dh, computed as

the global maximum minus the global minimum of the

surface forcing temperature divided by its global mean,

and the corresponding diagnosed value ofR. These were

diagnosed after the simulations were complete (i.e., they

were not tuned for), so it is interesting that the R values

are quite similar acrossV values, particularly for a5 2:0.

For example, R ’ 0.1–1.2 in all three um 5 908, a5 2:0

cases. Also note that these R values are much less than

the critical values required for the fhrce , 0 condition to

be satisfied in the case of LH88 forcing shown in Fig. 6.

This is because the h distribution depends not just on the

total magnitude of meridional temperature variations

but on the shape of those variations—as discussed pre-

viously, the ûrce profiles in Fig. 5 ‘‘ramp up’’ with positive

meridional curvature from the equator nearly to um,

rather than the LH88 cases (Fig. 3a) in which the me-

ridional curvature is negative throughout the domain.

TABLE 1. Forcing parameters of each simulation performed.

From left to right, columns indicate the ratio of planetary rotation

rate to Earth’s rotation rate, where VE is Earth’s rotation rate

(s21); latitude of forcing maximum (8); value of a (dimensionless);

tropopause temperature (K); difference between the surface and

tropopause temperatures used in the expression to generate the

forcing (K); temperature at the forcing maximum (K); largest

fractional temperature variation (dimensionless); and diagnosed

thermal Rossby number (dimensionless). Parameter values were

chosen so that ub ; 300K at the equator in all cases.

V/VE um a Tt Ts 2Tt Tmax Dh R

1 23.5 0.5 200 100 303.1 0.01 0.01

2.0 310.9 0.07 0.05

45 0.5 100 250 317.5 0.07 0.08

2.0 371.6 0.27 0.32

90 0.5 400 344.1 0.15 0.67

2.0 512.2 0.28 1.25

1/2 23.5 0.5 200 100 301.1 6 3 1023 0.01

2.0 304.0 0.03 0.05

45 0.5 310.5 0.04 0.08

2.0 342.7 0.17 0.32

90 0.5 200 321.2 0.07 0.28

2.0 392.1 0.31 1.16

1/4 23.5 0.5 200 100 300.3 2 3 1023 0.01

2.0 301.0 6 3 1023 0.05

45 0.5 302.6 0.01 0.08

2.0 310.2 0.04 0.32

90 0.5 310.3 0.04 0.28

2.0 342.9 0.15 1.13
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All simulations are run for 1200 days starting from

an isothermal, resting state, with results presented as

averages over the last 1000 days. Though a statisti-

cally steady state is achieved throughout the domain

generally within 100 days, regular transient sym-

metric instabilities persist throughout the integra-

tion over much of the extent of the Hadley cells (not

shown). As one example, in the simulation at Earth’s

rotation rate with um 5 458 and a5 2:0, equatorward-

propagating features are prominent from roughly 358
to 108S.

d. Results

Figure 6 shows the meridional overturning stream-

functions in each a5 2:0 case, and Fig. 7 shows the same

for the a5 0:5 cases, with angular momentum contours,

the computed Hadley cell edge latitudes, and um over-

laid. The cell edges are computed using the standard

metric of where the streamfunction at the sigma level

of its maximum decreases to 10% of that maximum

(Walker and Schneider 2006), but weighted as in Singh

(2019) to account for the weakening influence on the

streamfunction of meridians converging toward the

pole. Symbolically,

C(u
h
,s

max
)

cosu
h

5 0:1
C

max

cosu
max

, (11)

where C is the Eulerian-mean streamfunction, uh is the

cell edge, and Cmax is the streamfunction global maxi-

mum magnitude, which occurs at latitude umax and

sigma level smax.

A few features are consistent across all simulations.

First, the nonzero forcing gradient spanning the equator

necessitates an overturning cell in all cases. Second, the

streamlines of those cells are nearly coincident in the

free troposphere with angularmomentum contours. Third,

the Hadley circulations all comprise a single cross-

equatorial cell, with no discernible summer cell. And

fourth, the cross-equatorial cells extend to nearly the same

latitudes in the winter and summer hemispheres, typically

somewhat farther into the winter hemisphere.

Notable in the a5 2:0 cases are very strong equato-

rial jumps as described by Pauluis (2004), with some

FIG. 5. Equilibrium surface temperature distribution (K) that is relaxed toward in each simulation for (left to right) increasing forcing

maximum latitude um, (top to bottom) decreasing planetary rotation rate, and different values of a (thick blue for a5 0:5, thick red for

a5 2:0). Horizontal lines at the top of each panel correspond to the extent metrics as indicated by the legend in (b), with blue shades for

the a5 0:5 case and red shades for a5 2:0. Note different vertical axis spans in each panel.
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streamlines bending up out of the boundary layer

near 6108 and rising by as much as ;0.4 in s. This

jumping does not appear to affect the features of our in-

terest; simulations in which the jump is suppressed via a

stronger cross-equatorial temperature gradient do not

differ qualitatively outside the deep tropics (not shown).

Also overlaid are the ranges where any of the

Mrce .Va2, Mrce , 0, and fhrce , 0 conditions for cell

extent are met, and separately where the urce . uamc

condition is met. The value of ua used to compute uamc

is diagnosed from the minimum value of angular

momentum at the equator in the simulations Meq,min.

Given that value, then ua ’ arccos(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Meq,min /Va2

p
).

Roughly speaking, this amounts to finding the angular

momentum contour coincident with the circulation’s

topmost streamline at the equator and tracing it back

to the surface in the summer hemisphere (Singh 2019).

This value (shown as a vertical purple line) is generally

close to the edge diagnosed from the streamfunction and

for the a5 2:0 cases is near um also.

This rough coincidence of ua and um for a5 2:0 leads

to a single, nearly pole-to-pole cell in the polar maximal

forcing cases. The biggest offsets of ua and the cell edge

from um occur in theV5 13VE and um 5 908, for which
the computed cell edgemetric sits at;698. However, the

streamfunction retains its sign all the way to the pole,

and the cell is nevertheless global in scale (zonal winds

near the equator approach 400m s21 in the stratosphere

in this case; not shown). This is a remarkable contrast to

Earth’s present-day cross-equatorial Hadley cell, whose

summer hemisphere edge never extends beyond;158
in either hemisphere (based on the zero crossings of

the overturning streamfunction shown in Fig. 4 of

Adam et al. 2016).

For the a5 0:5 cases, the cells typically terminate

well equatorward of the forcing maximum—in the most

FIG. 6. Meridional overturning streamfunction (filled contours) and absolute angular momentum fields (gray contours) in the simu-

lations witha5 2:0 (see text for explanation of the experimental setup)with the forcingmaximumat (left to right) 23.58, 458, and 908N, and

planetary rotation rates of (a)–(c) 1, (d)–(f) 1/2, and (g)–(i) 1/4 times Earth’s rotation rate. In each panel, the contour interval for the

streamfunction is 10% of the value at the cell center, labeled by the red star and adjacent value (3109 kg s21), with red shades denoting

positive values and blue shades negative values, and the contour interval for the angular momentum is 10% of the planetary angular

momentumat the equator. The red vertical lines denote the cross-equatorial Hadley cell’s edges in thewinter (solid) and summer (dashed)

hemisphere, based on where the streamfunction reduces to 10% of its maximum at the same level. The purple solid line denotes the

effective ua, computed as described in the text. The blue dotted lines correspond to the location of the forcing maximum um. The dotted

horizontal line marks the planetary boundary layer top of s5 0:7.
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extreme case, with V5 (1/2)3VE and um 5 908, ua and

the cell edge are near 208. The poleward extent of su-

percritical forcing is typically equatorward of the cell

edge and ua by*108, but nevertheless across all a5 0:5

simulations is a more accurate predictor of cell extent

than is um.

Figure 8 shows ub, which we diagnose as the value of

u at s’ 0:85 in all cases. The a5 0:5 cell terminates near

where ›uub ’ 0, but sits just poleward of an inflection

point rather than just equatorward of a maximum as

suggested by Privé and Plumb (2007). The flattening of

ub equatorward of the ascent branch can be interpreted

(cf. Schneider and Bordoni 2008) as caused by the

southerly flow in the cell’s lower branch advecting ub
upgradient. This flattens ub up to where the meridional

flow diminishes, at which point ub begins increasing

sharply with latitude moving farther poleward. Con-

versely, with a5 2:0 temperatures are minimum near

the equator and increase moving into either hemisphere

as needed to generate the strong easterlies necessary for

the AMC cell.

Because we are not using the HH80 or LH88 forcing

profiles in these simulations, we cannot explicitly com-

pare to the equal-area model predictions. But Fig. 8

shows that equal-area-like behavior is occurring (cf. the

thick dark lines to the corresponding thin pale lines, the

latter being ûrce). The dynamically equilibrated û fields

intersect the ûrce fields at low latitudes where the former

are flat and the latter are quite steep, in the winter

hemisphere from below, and in the summer hemisphere

from above, yielding areas between the two curves that,

at least by eye, roughly cancel. But importantly, in all

simulations ua #um, in contradiction to the equal-area

prediction. Comparison to the equal-area model is fur-

ther hindered by the fact that, especially for the global-

scale cells, the ascending branch is sufficiently wide that

the AMC assumption of a single M value throughout

the cell becomes problematic.

5. Summary

We have presented theoretical arguments and nu-

merical modeling results pertaining to the extent of the

cross-equatorial Hadley cell under solstitial forcing,

utilizing steady, dry, axisymmetric, nearly inviscid the-

ory. By Hide’s theorem, a state of latitude-by-latitude

radiative–convective equilibrium (RCE) is impossible if

its distribution of absolute angular momentum Mrce

exhibits any local extrema away from the surface, which

occurs if Mrce , 0 or Mrce .Va2 at any latitude or if the

FIG. 7. As in Fig. 7, but for the a5 0:5 simulations.
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corresponding absolute vorticity hrce exhibits fhrce , 0

at any latitude. A more general form of the fhrce , 0

condition holds even in zonally varying and/or purely

inviscid atmospheres (E95; see our appendix A), and a

Hadley circulation must span all latitudes that meet one

of these conditions. But in the winter hemisphere, typ-

ically only theMrce .Va2 condition is met, and only very

near the equator, makingHide’s theorem by itself a poor

predictor of how far a cross-equatorial cell will extend

into the winter hemisphere.

The angular momentum–conserving (AMC) Hadley

cell models yield cells that must span all latitudes where

the RCE zonal wind urce exceeds the AMC zonal wind

uamc. This urce .uamc lower bound on the circulation

extent provides a simple heuristic argument for why

cross-equatorial cells typically extend at least as far into

the winter hemisphere as into the summer hemisphere in

axisymmetric atmospheres. However, using the AMC

model prognostically requires a prediction for the lati-

tude at which ascent is concentrated ua and thus where

the planetary angular momentum value gets imparted to

the free troposphere.

The equal-area model combines the AMC assump-

tions with assumptions of energy conservation by the

cells and continuity of potential temperature at their

edges and generate predictions given the RCE state for

the edges of each overturning cell, unlike the urce .uamc

condition that sets a lower bound for the extent across

all cells. However, it can be solved analytically only in

the on-equatorial forcing, small-angle case. Much more

problematic, as the latitude where the forcing maximizes

um is moved poleward, the predicted Hadley circulation

extent becomes implausibly large for Earth, even when

all parameters are Earth-like.

Simulations in an idealized, dry GCM in which tem-

peratures are relaxed at each time step toward a speci-

fied RCE field that is either subcritical or supercritical in

the summer hemisphere up to a specified um show the

utility of Hide’s theorem.When the forcing is subcritical

outside the deep tropics, Hadley cells terminate typi-

cally within ;258 of the equator and often well equa-

torward of um, in which cases the cell edge sits slightly

poleward of an inflection point between flat tempera-

tures equatorward and sharply increasing temperatures

FIG. 8. Potential temperature (thick solid curves; K) at the s’ 0:85 level in the a5 0:5 (blue) and a5 2:0 (red) cases and the corre-

sponding forcing values (thin solid curves), with panels oriented as in Fig. 5. As indicated by the legend in (c), vertical dotted lines are the

effective ascent latitude for a5 0:5 (blue) and a5 2:0 (red) and the forcing maximum latitude (gray). Note different vertical axis spans in

each panel.
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poleward. Conversely, when the forcing is supercriti-

cal from the equator to um, the cells extend always into

the direct vicinity of um, yielding under polar maximal

forcing a single, global-scale (though not quite pole

to pole) cell even at Earth’s rotation rate. In all cases,

the cells span roughly as far into either hemisphere,

in reasonable agreement with the urce . uamc condition

given values of ua and uamc fields diagnosed from the

simulation output.

6. Discussion

How relevant are these results based on dry models to

moist atmospheres? Insofar as convective quasi equi-

librium holds, (10) is valid in moist atmospheres. But, as

noted by E95, the irreversible fallout of precipitation in

convecting towers creates an asymmetry between the

ascending and descending branches of the circulation;

the dry adiabatic lapse rate in the dry, descending

branch due to radiative cooling–generated descent

generates a stable cap over the underlying boundary

layer, such that the free troposphere and boundary layer

quantities decouple (Zheng 1998). This cannot be ad-

dressed simply via a change of variables, and (10) can

only hold for those columns wherein such decoupling

does not occur.

Recently, Singh (2019) has presented a diagnostic

relating the cross-equatorial cell edge to the condition

of neutrality to slantwise convection (cf. Emanuel 1986)

that is quantitatively accurate across simulations with

differing planetary rotation rates. And Colyer andVallis

(2018) have analyzed the scalings that emerge when the

opposite assumptions as usual in the AMC model are

made regarding continuity at the cell edge (i.e., that

wind is continuous while temperature is discontinuous);

they find this new variant to be preferable in some ways

for large-R cases with planetary-scale cells.

Under purely adiabatic stratification as in the RCE

state, the cells would transport no heat as they overturn,

implying that the cells always generate their own posi-

tive static stability via some mechanism. Caballero et al.

(2008) cites two mechanisms: first, penetration of the

cells into the positively stratified stratosphere and, sec-

ond, horizontal homogenization of the upper-branch

temperature, which is equal to the surface temperature

value within the ascending branch. Another theory that

seems worth pursuing is that presented by Emanuel and

Rotunno (2011) for tropical cyclones: as tightly packed

streamlines in the eyewall tilt from vertical to horizon-

tal, small-scale turbulence sets in until enough static

stability has been generated to relax the Richardson

number to some critical value. This same mechanism

could apply to, and the corresponding formalism of

Emanuel and Rotunno (2011) adapted for, axisymmet-

ric Hadley cells. In addition to its influence on the static

stability, this could potentially form a minimal theoret-

ical model for the angular momentum mixing across

upper-branch streamlines noted by many authors (e.g.,

HH80; LH88; Adam and Paldor 2009).

In our simulations, the Hadley cells roughly conserve

angular momentum in the sense that individual stream-

lines are nearly parallel with individual angular mo-

mentum contours in the free troposphere. But the true

theoretical AMC circulation has a single value of M,

namely the planetary value at ua, whereas the simulated

cells feature steadily decreasing M values moving pole-

ward. Undoubtedly this nonuniformity relates to the finite

width of the simulated ascending branch and resulting

turbulent momentum mixing, as well as to momentum

advection within the ascent branch. It could be useful to

use an alternative û profile that gives rise to such behavior,

such as the solution from the ‘‘1.5’’-layer model of Adam

and Paldor (2010), and use it in the place of the true ûamc

field in the equal-area model.
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APPENDIX A

Derivation of Hide’s Theorem in Zonally
Varying Atmospheres

Consider the vorticity equation

›z

›t
52u � =

h
(f 1 z)2w

›z

›z
2 (f 1 z)=

h
� u

1 k �
�
›u

›z
3=

h
w

�
2D , (A1)

where u5 (u, y), =h is the horizontal divergence oper-

ator, D is a damping term whose functional form is ir-

relevant insofar as it vanishes when z vanishes (as it

should), and in zonally varying atmospheres a1›xy term

is added to z. Suppose there exists some level at which

vertical velocity vanishes at all latitudes and longitudes

[the tropopause being a plausible candidate, insofar as it
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occurs at a fixed level in RCE as argued by Caballero

et al. (2008)]. At that level, all terms of (A1) featuring w

are zero, and the remaining terms on the right-hand side

also vanish if h5 f 1 z5 0. In that case, ›th5 ›tz5 0,

and h5 0 is a stationary point, making it impossible for

absolute vorticity to evolve in time from one sign to

another. Thus, given an initial resting state (or one with

sufficiently weak horizontal shears that h everywhere

takes the sign of f ), a subsequent state with fh, 0 is

impossible.

The fh, 0 condition has two additional physical im-

plications. First, it marks the onset of symmetric in-

stability (Stevens 1983). Second, in a purely inviscid

atmosphere, it is impossible to change the sign of the Ertel

potential vorticity ah � =u, where a is specific volume,

his the absolute vorticity vector, and the = operator is

three-dimensional. Accordingly, absolute vorticity cannot

change signs (unless the flow was to generate unstable

stratification). Finally, note that the fhrce , 0 condition,

since it refers to the RCE state, is distinct from the argu-

ment by Tomas andWebster (1997) that inertial instability

controls the location of the ITCZ, since the latter refers to

the dynamically equilibrated state.

APPENDIX B

Derivation of h5 0 Location under LH88 Forcing

Equation (7) implies Mrce , 0 where

2R

11 2R
.

sinu
sinu

m

. (B1)

The left-hand side of (B1) is at most unity, while the

right-hand side is,1 for 0,u,um, guaranteeing some

finite latitude range in the summer hemisphere for which

no RCE solution exists. For very large R, the left-hand

side approaches unity, such that the Mrce , 0 constraint

is violated essentially all the way to um, and the circu-

lation is certain to extend at least to the vicinity of um.

For the fhrce , 0 condition, the absolute vorticity field

corresponding to (7) is

h
rce,LH88

5V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 2R

�
12

sinu
m

sinu

�s

3 2 sinu2
cos2u

sin2u

R sinu
m

11 2R 12
sinu

m

sinu

� �
2
664

3
775 .

(B2)

Evaluated at um, this becomes

h
rce,LH88

(u5u
m
)5 2V sinu

m

�
12

R

2

cos2u
m

sin2u
m

�
, (B3)

which shows that fhrce(u5um), 0 if tan2um ,R/2, or

um ,
ffiffiffiffiffiffiffiffi
R/2

p
in the small-angle limit. For the original

LH88 case with um 5 68’ 0:1 rad and R’ 0:1, it follows

that
ffiffiffiffiffiffiffiffi
R/2

p
’ 0:2, and thus the fhrce , 0 condition is met

at um, as shown in Fig. 3. Figure B1 shows (B3) as a

function of um, both with and without the small-angle

approximation. As the forcing maximum moves

poleward, a largerR is required to ensure the circulation

extends at least to um (Guendelman and Kaspi 2018).

APPENDIX C

Dissipative Processes in the Idealized Dry GCM

The three dissipative processes are =8 hyperdiffusion

to represent subgrid-scale dissipation, quadratic damp-

ing of winds within the planetary boundary layer to

represent surface drag, and vertical diffusion in the free

atmosphere to suppress symmetric instabilities that

otherwise cause the model to crash. The quadratic drag

formulation is ›tu5 � � �2k(s)juju, where u5 (u, y) is

the horizontal wind vector, juj5 (u2 1 y2)1/2 is the hori-

zontal wind speed, and k(s) is the drag coefficient, which

takes its maximal value at the surface and decreases line-

arly in the model’s vertical sigma coordinate (s[ p/ps,

where ps is the spatiotemporally varying surface pressure)

to a value of zero at sb,top, the prescribed boundary layer

top. The planetary boundary layer top is at 0.85 to 0.7 and

its drag coefficient is 5 3 1026m21. Free-atmospheric

viscosity is formulated as standard as vertical diffusion,

FIG. B1. Values of um (horizontal axis) and thermal Rossby

number (vertical axis) for which the RCE absolute vorticity at um

corresponding to the LH88 forcing profile is zero. The solid black

curve is the full solution, and the dotted black curve is the small-

angle limit. Values above and to the left of the solid curve corre-

spond to fhrce , 0 atum, thereby ensuring a circulation that extends

to at least um.
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such that ›tu5 � � � 1 ›z(n›zu) for zonal and meridional

momentum and analogously for temperature with Prandtl

number unity. This is turned on only at model levels

above a fixed height of 2500m, a slightly different

boundary layer top criterion than the fixed sigma level

used by the boundary layer drag scheme.

Rather than the commonly used uniform n (e.g.,

HH80; LH88; PH92; Bordoni and Schneider 2010), the

model uses a mixing-length formulation:

n5 l2mix

�
12

Ri

Ri
crit

�2jDuj
Dz

,

where lmix is the mixing length (a global constant), Ri is

the bulk Richardson number, Ricrit [ 0:25 is a critical

Richardson number above which free-atmospheric dif-

fusion does not occur, D denotes differences between

adjacent model levels, and jDuj5 [(Du)2 1 (Dy)2]1/2. The
bulk Richardson number is defined conventionally:

Ri5 gDuDz/(ujDuj2). Under this formulation, the diffu-

sivity increases with the vertical shear of the horizontal

wind speed and decreases with the static stability ›zu.

We have experimented with a range of mixing length

values in a subset of the simulations in order to find the

lowest value in which the model integration runs suc-

cessfully; that value is 15m in all simulations except the

most strongly forced simulation at Earth’s rotation rate,

which required a value of 30m.
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