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ABSTRACT: We present a theory for the latitudinal extents of both Hadley cells throughout the annual cycle by combin-
ing our recent scaling for the ascending edge latitude based on low-latitude supercriticality with the theory for the pole-
ward, descending edge latitudes of Kang and Lu based on baroclinic instability and a uniform Rossby number (Ro) within
each cell’s upper branch. The resulting expressions for all three Hadley cell edges are predictive except for diagnosed
values of Ro and two proportionality constants. Thermal inertia}which damps and lags the ascent latitude relative to the
insolation}is accounted for semianalytically through the Mitchell et al. model of an “effective” seasonal forcing cycle. Our
theory, given empirically an additional ∼1-month lag for the descending edge, captures the climatological annual cycle of
the ascending and descending edges in an Earthlike simulation in an idealized aquaplanet general circulation model
(GCM). In simulations in this and two other idealized GCMs with varied planetary rotation rate (V), the winter, descending
edge of the solsticial, cross-equatorial Hadley cell scales approximately as V21/2 and the summer, ascending edge as V22/3,
both in accordance with our theory. Possible future refinements and tests of the theory are discussed.
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1. Introduction

Climatologically over the annual cycle, the poleward, descend-

ing edges of the Hadley cells vary meridionally by � 58 latitude

about their annual-mean positions, considerably less than the

∼158S–158N range of the shared, ascending edge (cf. Fig. 4 of

Adam et al. 2016). These result in a pronounced seasonal cycle

of zonal-mean rainfall in the deep tropics versus more consis-

tently dry conditions in the subtropics. Regional hydrological

deviations from the zonal average are pronounced}with, for ex-

ample, intense Indian summer monsoon rainfall spanning roughly

the same latitudes as the Sahara and Arabian Deserts (Rodwell

and Hoskins 1996)}nevertheless, we focus on the zonal-mean

dynamical problem, seeking a minimal explanation for the dif-

fering annual cycles of the Hadley cell descending and ascending

edges (henceforth wd and wa, respectively, and formally defined

below in terms of the mass overturning streamfunction).

For wd, our starting point is the theory of Kang and Lu

(2012, henceforth KL12), whose own starting point is that

of Held (2000, henceforth H00) for the annual-mean wd that

assumes the Hadley cells terminate where their zonal wind

profiles become baroclinically unstable. KL12 extend the

H00 model in two key ways. First, they generalize from the

annual mean to the annual cycle by accounting, albeit diag-

nostically, for off-equatorial wa. For angular-momentum-

conserving (AMC) zonal winds as assumed by H00, ascent

off the equator results in less positive zonal winds at each

latitude (Lindzen and Hou 1988, hereafter LH88) and thus

to baroclinic instability onset occurring farther poleward

than for equatorial ascent. All else equal, this would cause

wd to be farther poleward in solsticial seasons when wa is far-

ther off-equator than in equinoctial seasons. An example of

this framework’s utility is Hilgenbrink and Hartmann (2018),

who interpret changes in wd throughout the annual cycle caused

by ocean heat transports in terms of changes in wa.

Second, KL12 relax the H00 assumption of strictly AMC

winds by assuming that the Rossby number (Ro) is uniform

throughout each Hadley cell’s upper branch but not necessarily

unity. Its formal definition follows below, but for now Ro is ex-

actly unity for AMC winds and exactly zero if zonal winds them-

selves are zero, and KL12 derive an analytical expression for the

meridional profile of zonal wind under uniform 0 , Ro # 1. In

simulations (Walker and Schneider 2006) and reanalysis data

(Schneider 2006), Ro is regularly below unity and typically

smaller in the equinoctial and summer cells than in the cross-

equatorial winter cell (Bordoni and Schneider 2008; Schneider

and Bordoni 2008). By diagnosing a bulk value of Ro for each

cell and meteorological season in addition to wa, KL12 provide

closed expressions for the Northern and Southern Hemisphere

descending edge latitudes in all four seasons.1

Corresponding author: Spencer Hill, spencerh@princeton.edu

1 Other authors also have considered a uniform Ro in the tropi-
cal upper troposphere. Becker et al. (1997) find that a uniform
Ro = 0.5 approximation [their Fig. 7 and Eq. (28)] adequately cap-
tures the vorticity distribution in the descending branch of the
winter Hadley cell in their simplified, dry GCM. Zurita-Gotor and
Held (2018) discuss the absolute vorticity distribution correspond-
ing to uniform Ro.
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For wa, in Hill et al. (2021) we presented a scaling for wa by

assuming that it is set by the meridional extent of supercritical

radiative forcing in the summer hemisphere (the meaning of

which we expand upon below). In essence, the present

study simply replaces the diagnosed wa in the KL12 model

with this predictive scaling. The one departure from Hill

et al. (2021)}which implicitly treated thermal inertia as negli-

gible by relating the seasonally varying wa to the contemporane-

ous insolation}is accounting for thermal inertia’s damping and

delaying of the wa annual cycle via the analytical model of

Mitchell et al. (2014). The result is a unified theory for wa and

both hemispheres’ wd with only two proportionality constants

as well as Ro diagnosed (potentially with distinct Ro values

required for each cell and season).

Separately, in general circulation model (GCM) simulations

with differing planetary rotation rates (V) the solsticial, cross-

equatorial Hadley cell expands into both the summer and win-

ter hemispheres as V decreases (e.g., Faulk et al. 2017; Singh

2019). But whereas in an Earthlike regime the summer wa

and winter wd are comparably poleward, in slowly rotating

cases the summer wa is farther poleward than the winter wd:

the cross-equatorial Hadley cell becomes increasingly lopsided

about the equator [e.g., Fig. 5 of Guendelman and Kaspi (2018)

and Fig. 12 of Guendelman and Kaspi (2019)].2 Moreover,

Guendelman and Kaspi (2019) empirically find distinct best-fit

power-law exponents for the two edges, close to wa ∝ V22/3 and

wd ∝ V21/2. We will use our theory along with idealized GCM

simulations to explain these exponents and how they relate to

the lopsidedness of the cross-equatorial cell.

In the following sections we

• derive and describe fixed-Ro zonal wind, angular momentum,

and depth-averaged potential temperature fields (section 2);
• present our unified theory, which essentially combines

the KL12 model for wd with the Hill et al. (2021) theory

for wa (section 3);
• and test our theory against idealized GCM simulations, first

over the annual cycle in one moist model and second for

the solsticial Hadley circulation across rotation rates in one

dry and two moist models (section 4).

We then conclude with summary and discussion (section 5).

2. Uniform-Ro fields

In general, absolute angular momentum is

M  a cosw(Va cosw 1 u), (1)

where a is planetary radius, w is latitude, and u is the zonally av-

eraged zonal wind. This can be considered the sum of planetary

angular momentum, Mp(w) ≡ Va2 cos2w, and relative angular

momentum ua cosw. The corresponding AMC zonal wind

field}for which angular momentum is meridionally uniform

and equal to the planetary angular momentum value Mp(wa)

at a specified latitude wa}is

uamc(w)  Va cosw
cos2wa

cos2w
2 1

" "

: (2)

For the Hadley cells, we equate wa in (2) with the cells’ ascend-

ing edge on the grounds that ascent out of the viscous boundary

layer there transmits the local planetary angular momentum

Mp(wa) to the comparatively inviscid free troposphere (Held

and Hou 1980; LH88). This neglects the finite width of the as-

cent branch (Watt-Meyer and Frierson 2019; Byrne and Thomas

2019), but in principle one could compute an effective ascent lat-

itude by averaging the planetary angular momentum over the

full extent of the ascending branch, perhaps weighting by the

vertical velocity out of the boundary layer at each latitude.

The Rossby number is defined as

Ro ≡2
z

f
, (3)

where z ≡ 2(a cosw)21w(u cosw) is zonal-mean relative vortic-

ity and f ≡ 2V sinw is the planetary vorticity (i.e., the Coriolis pa-

rameter). Absolute vorticity is given by h = f 1 z = f(1 2 Ro).

Absolute vorticity is proportional to the meridional gradient of

angular momentum, and as such in an AMC state necessarily

h = 0 and Ro = 1. In discussing the GCM simulations below, we

will make use of a generalized version of Ro (Singh 2019), but

(3) is the quantity used in the fixed-Ro fields we now define.

From (3), z = 2Rof. If Ro , 1 but horizontally uniform,

integrating meridionally yields the fixed-Ro zonal wind field,

uRo(w)  Rouamc(w), (4)

which is simply the AMC zonal wind field scaled by Ro.3 The

corresponding angular momentum field is

MRo(w)  Va2[Ro cos2wa 1 (1 2 Ro)cos2w], (5)

which is a Ro-weighted average of the planetary angular mo-

mentum at the ascent latitude,Mp(wa), and the full meridional

distribution of the planetary angular momentum,Mp(w).

Finally, though it does not enter into our model for the Hadley

cell edges below, we present for a Boussinesq atmosphere

[see, e.g., Eq. (1) of Hill et al. (2019) for the full underlying

system of equations] the depth-averaged potential temperature

field in gradient balance with uRo. Denoted ûRo, it is given by

ûa 2 ûRo(w)
u0

 Ro

2Bu

�
(2 2 Ro)cos2w 1 cos2wa

3

�
4(1 2 Ro)ln coswa

cosw

� �
1 Ro

cos2wa

cos2w
2 2

��
, (6)

2 This strictly applies to nonaxisymmetric atmospheres. It does
not emerge clearly in simulations of axisymmetric atmospheres,
which on theoretical grounds should exhibit wd poleward of 2wa

(Hill et al. 2019).

3 Davis and Birner (2022) present what amounts to (4) (i.e. uamc

multiplied by a less-than-unity constant) from heuristic grounds al-
beit without reference to Ro; it should be noted that they also
challenge the physical validity of baroclinic instability onset deter-
mining Hadley cell extent.
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where ûa is the depth-averaged potential temperature at the lat-

itude wa, u0 is the Boussinesq reference potential temperature,

Bu ≡ gH

(Va)2
(7)

is the planetary Burger number with gravity g and tropopause

height H, and we have assumed that uRo occurs near the tro-

popause while u ≈ 0 at the surface.

Figure 1 shows example uRo, MRo, and ûRo fields with

Ro = 1, 0.5, or 0.3 and wa = 08 or 208. For zonal wind, irrespec-

tive of Ro and wa, uRo vanishes at wa and increases monotoni-

cally moving away from the equator. If wa Þ 0, uRo is negative

from 2wa to wa, minimizing at the equator. Both moving wa off

equator and decreasing Ro act to make the westerlies less

positive. For example, at 308S/N, uRo ≈ 133, 67, and 40 m s21,

respectively, for Ro = 1, 0.5, and 0.3 if wa = 0 or 71, 36, and

21 m s21, respectively, if wa = 208. For angular momentum,

irrespective of Ro and wa,MRo at wa is equal to the local plane-

tary angular momentum Mp(wa); if Ro = 1, all latitudes take

this value. For Ro , 1, it maximizes at the equator and

decreases monotonically moving poleward. For the gradient-

balanced potential temperature, ûRo maximizes at wa irrespective

of Ro and wa and for waÞ 0 has a local minimum at the equator.

As Ro increases, the meridional temperature gradients increase

in magnitude, with a deeper equatorial dip and a more equator-

ward shoulder poleward of wa where temperatures begin drop-

ping rapidly toward the pole.

3. Combined theory for Hadley cell ascending and

descending edges

We now use these fixed-Ro fields to derive an expression

for wd given values of Ro and wa that closely follows KL12.

We then introduce within it our scaling for wa, yielding our

unified theory for wd and wa. We then incorporate the influ-

ence of surface thermal inertia on the seasonal cycles of wa an-

alytically and on wd more empirically.

a. Baroclinic instability onset theory for the Hadley cell

edge with Ro , 1

Following H00, the baroclinic instability criterion for the

two-layer model is approximately

u

Va
 BuDv

cosw

sin2w
, (8)

where u is the zonal wind in the upper layer, the wind in the

lower layer has been assumed small enough to neglect, and

Dv is a static stability parameter representing the bulk fractional

increase in potential temperature from the surface to the tropo-

pause.4,5 H00 applies this to the annual-mean Hadley cells by

assuming on-equatorial ascent, that the zonal winds are AMC,

and that the descending edge is identical to this baroclinic insta-

bility onset latitude. Formally, taking wa ≈ 0, using (2) for u in (8),

and taking the small-angle limit yields the original H00 theory for

wd, which we denote wH00:

wH00  (BuDv)
1/4

: (9)

Using uRo (4) rather than uamc (2) as the zonal-wind profile in

(8), for Ro, 1 the predicted cell edge becomes

FIG. 1. Example (a) zonal wind (uRo, in m s21), (b) angular momen-
tum (MRo, normalized by Va2 and thus unitless), and (c) depth-
averaged potential temperature (ûRo, in K) fields under a uniform
Rossby number. Red curves are for wa = 0 and blue curves wa = 208S/N,
while dotted, dashed, and solid curves are for Ro = 1.0, 0.5, and 0.3,
respectively. Horizontal axis spacing is in sinw.

4 H00 uses the symbol R to denote the planetary Burger num-
ber, which elsewhere (Held and Hou 1980; Hill et al. 2019) is used
for the thermal Rossby number. To prevent confusion, we use the
more explicit notation Bu for the planetary Burger number and
Roth for the thermal Rossby number.

5 The tropopause depth H, which for the H00 theory is strictly
the local tropopause height, is assumed horizontally uniform and
unmodified by the large-scale circulation from its forcing value
corresponding to latitude-by-latitude radiative–convective equilib-
rium; see Hill et al. (2020) for justification.
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wRo,ann  
BuDv

Ro

� �1/4

 Ro21/4wH00, (10)

with wH00 given by (9). This displaces the cell edge prediction

poleward by, for example, ∼19% if Ro = 0.5 or ∼50% if Ro = 0.2.

Using the original H = 10 km and Dv = 1/8 parameter values

from Held and Hou (1980) yields Bu ≈ 0.46 and wH00 ≈ 288,

which becomes approximately 33.38 if Ro = 0.5 or 41.98 if

Ro = 0.2. This poleward displacement as Ro decreases co-

heres with physical intuition: because the upper-layer zonal

wind magnitude at each latitude decreases as Ro decreases,

the two-layer baroclinic instability onset criterion is met farther

poleward.

For wa Þ 0, using (4) in (8) gives without approximation

sin4wd

cos2wd

2sin2wa

sin2wd

cos2wd

2
BuDv

Ro
 0, (11)

where wd is the descending edge. From (10) the last term could

equivalently be written2w4
Ro,ann. These arguments serve equally

for the cross-equatorial, winter cell and the summer cell

(provided it exists), depending on which cell the chosen Ro

value is representative of. A corollary is that if the mean Ro

value is the same in both cells, then the Hadley circulation ex-

tends equally far into either hemisphere irrespective of wa. Note

that our assumption of uniform Ro throughout either cell dif-

fers slightly from KL12, who assume Ro = 1 from the summer

hemisphere edge of the cross-equatorial cell to the equator, a

uniform Ro # 1 value in the winter hemisphere, and a uniform

Ro# 1 value throughout the summer cell.

We have performed a 2D parameter sweep over wa and

(BuDv /Ro)1/4, from 08 to 908 in 18 increments for wa and from

0 to 2 in 0.01 increments for (BuDv /Ro)
1/4, solving (11) numeri-

cally for each pair of parameter values. The results are shown as

shaded contours in Fig. 2.6 Recalling that wRo,ann ≡ (BuDv/Ro)
1/4,

the right vertical axis shows the equivalent values of wRo,ann up

to 908, above which the small-angle solution obviously is non-

sensical but the full solution retains its validity. The value of

wd increases monotonically with wa and with (BuDv/Ro)1/4.

Close to the vertical axis of Fig. 2, |wRo,ann/wa| .. 1, and

wd ≈ wRo,ann: wa is negligibly off-equator. Close to the horizon-

tal axis, |wRo,ann/wa|,, 1, and thus wd ≈ wa. This regime usefully

describes cases where the summer cell effectively disappears, as

in all of the perpetual solstice simulations we will discuss below.

For the winter hemisphere, the interpretation is that baroclinic

instability onset occurs just poleward of 2wa, near enough that

it can be approximated as 2wa. For intermediate values, if, e.g.,

wa = wRo,ann, then wd is displaced 27% poleward of wa. We note

that |wd|$ |wa|; the descending edge latitude is always at or pole-

ward of the ascending edge latitude. This is appropriate for the

summer hemisphere wd but will prove imperfect for the winter

wd in the idealized GCM simulations across rotation rates dis-

cussed below.

Making the small-angle approximation for both wd and wa

in (11) yields a closed expression for wd:

w2
d  w2

a

1

2
1

��������������
1

4
1

BuDv

Row4
a

�£¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¥

¦§§§§§§§§§§§§§§§§§§§̈  w2
a

1

2
1

�������������������
1

4
1

wRo,ann

wa

� �4
�£¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¥

¦§§§§§§§§§§§§§§§§§§§̈: (12)

This is shown as overlaid contours in Fig. 2. Only for

(BuDv/Ro)1/4
� 0:8 does the small-angle approximation error

exceed a few degrees latitude, irrespective of wa.

b. Incorporating theory for wa

Using (12) requires knowledge of wa, which KL12 diagnose.

Hill et al. (2021) derive a prognostic theory for wa as deter-

mined by the meridional extent of supercritical forcing, based

on the following arguments. If no large-scale meridional over-

turning circulation existed, local radiative–convective equilib-

rium (RCE) must prevail at each latitude in the time mean. But

given the resulting meridional temperature gradients driven by

the meridional distribution of insolation, this hypothetical RCE

state would generate zonal wind fields through gradient balance

that are symmetrically unstable from the equator to some lati-

tude in the summer hemisphere; the presence of this instability

defines the tropical supercritical forcing extent (Plumb and Hou

1992; Emanuel 1995). A large-scale meridional overturning cir-

culation therefore must emerge spanning at least the supercriti-

cal latitudes, and in axisymmetric atmospheres that circulation

must be the Hadley cells. In eddying atmospheres, in principle

the circulation that emerges over the supercritical region could

be predominantly macroturbulent as in the extratropics rather

FIG. 2. Numerical solutions of (11) for values of wa and of
(BuDv/Ro)1/4, with wa sampled from 08 to 908 in 18 increments
and (BuDv/Ro)1/4 (which is dimensionless) from 0 to 2.0 in 0.01
increments. The right vertical axis labels are the wRo,ann solu-
tions from 08 to 908 corresponding to the given (BuDv/Ro)1/4

values. Areas in white indicate that the simple numerical algo-
rithm used did not converge, but clearly they correspond to wd very
near the pole. Contours are from 58 to 908 in 58 increments accord-
ing to the color bar. Overlaid gray contours are the corresponding
small-angle solutions obtained using (12), likewise from 58 to
908 in 58 increments.

6 Over most of the parameter space, this quartic equation has
only two solutions, which correspond to6wd. Two additional solu-
tions straddling very close to zero can appear for sufficiently large
wa but are not physically meaningful.
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thanHadley-like, but in practice the opposite occurs: the ascending

edge latitude is poleward of}and, crucially, proportional

to}the supercritical extent.

Formally, in the small-angle limit Hill et al. (2021) show

that

wa  ca
Roth
2

� �1/3

, (13)

where (Roth/2)
1/3 is the theoretical solution for the supercriti-

cal extent and ca is the empirically determined proportionality

constant. Roth is the thermal Rossby number,

Roth ≡ BuDh sinwm, (14)

with Dh the parameter of the imposed forcing (i.e., the latitude-

by-latitude RCE state) that}in conjunction with wm, the

latitude at which the forcing maximizes}determines the bulk

meridional temperature gradients of the forcing. The same

Ro1/3
th scaling emerges in the semiempirical, axisymmetric

theory of Caballero et al. (2008), as well as (for sufficiently

small Roth) in numerical solutions of the original LH88 axi-

symmetric, equal-area model of the solsticial Hadley cells

(Guendelman and Kaspi 2018). The Hill et al. (2021) scal-

ing (13) emerges from a less strict set of assumptions than

Caballero et al. (2008) and presupposes neither axisymme-

try nor anything about the resulting circulation’s zonal wind

and energy transport fields, unlike the equal-area model.

Moreover, the solsticial equal-area model (LH88) predicts

implausibly large Hadley cells for Earth as wm moves more

than a few degrees off equator (Hill et al. 2019) and is biased

poleward against numerical simulations in an idealized GCM

over a wide range of planetary parameter values (cf. Fig. 15a of

Guendelman and Kaspi 2019).

For the solsticial, cross-equatorial Hadley cells in the simu-

lations analyzed by Hill et al. (2021) the best-fit value of ca
ranges from 1.3 to 2.6 across three idealized GCMs.7 For Roth,

Hill et al. (2021) show that for solsticial seasons one can attain

an accurate estimate with wm set to 908 by tuning the value of

Dh. Doing so, the nonstandard sinwm term drops out and the

Roth definition becomes the more conventional Roth = BuDh.

But the sinwm dependence is necessary for understanding the

annual cycle as will be discussed further below (see also Fig. 15

of Guendelman and Kaspi 2020).

Given diagnosed values of ca and Ro for each Hadley

cell, (13) in conjunction with (12) provide a theory for all

three cell edges: (13) predicts wa, and using that in (12) for

wd then yields

wd  cdca
Roth
2

� �1/3
����������������������������������������������
1

2
1

��������������������������������������
1

4
1

24/3

c4a

Dv

Dh sinwm

1

RoRo1/3
th

����

,

(15)

where we have also included the empirical fitting parameter

cd that will prove necessary for the simulations analyzed be-

low. The term Dv/Dh sinwm, which is the ratio of the planetary-

scale vertical to horizontal fractional potential temperature

changes of the latitude-by-latitude RCE state, amounts to a

seasonally varying bulk isentropic slope of the forcing. From

(15), the poleward edge of either Hadley cell increases with in-

creasing Roth, increasing RCE isentropic slope, or decreasing

Ro. Large Roth corresponds to the large-wa limit above,

wd≈wa, while small Roth corresponds to the small-wa limit of

wd≈wRo,ann.

c. Influence of surface thermal inertia on the wa

seasonal cycle

Because insolation varies seasonally, any nonzero thermal

inertia of the surface mixed layer damps and delays the sur-

face thermal response, the more so the larger the mixed layer

heat capacity. This is true of the dynamically equilibrated cli-

mate but also the hypothetical latitude-by-latitude RCE state

that determines wa. We therefore now define an “effective”

thermal forcing based on the analytical model of Mitchell et al.

(2014) which leaves the functional form of (13) for wa intact

but modifies the wm term within Roth to be damped and de-

layed in its seasonal excursions. The appendix below provides

the derivation, presenting here only the end results of how wm

is modified.

First consider the unmodified wm annual cycle. For Earth’s

present-day insolation, during equinoctial seasons there is only

one maximum in wm, but during solsticial seasons there are two

maxima in the summer hemisphere, a local one near 448 and

the global maximum at the summer pole (see, e.g., Fig. 1 of Hill

et al. 2021). Though the polar maximum is relevant for the

global-scale Hadley cells in other planetary atmospheres (Singh

2019), for Earth we can comfortably consider the midlatitude

maximum at solstice to be wm. An advantage of this choice

is that, combining the equinoctial and solsticial seasons, this

yields a nearly sinusoidal annual cycle of wm (not shown):

wm ≈ wm,ann cos[vorb(t 2 tsolst)], where wm.ann = 448 is the an-

nual maximum value of wm, vorb is the orbital frequency, t is

the time of year, and tsolst is the time of year of northern

summer solstice.

Next, cf. Mitchell et al. (2014) we define the ratio of the

seasonal time scale to the thermal inertial time scale as

a ≡ (vorbtti)
21, where tti  Cml/(4sT

3) is the thermal inertia

time scale with Cml the surface mixed layer heat capacity,

s the Stefan–Boltzmann constant, and T the annual-mean,

global-mean temperature. The heat capacity of the mixed

layer is given by Cml = rwcwHml, where rw is the density of

liquid water, cw is the heat capacity of liquid water, and Hml is

the depth of the mixed layer. Using values of rw = 1000 kg m23,

cw = 4186 J kg21 K21, and takingHml = 10 m as used in the sim-

ulation to be discussed, we have Cml ≈ 4.186 3 107 J m22 K21.

Then using T  288K and s = 5.67 3 1028 W m22 K24,

the thermal inertia time scale is tti ≈ 89 days. Using

vorb = 2p/365 days21 we have a ≈ 0.65, an intermediate value:

the thermal inertial and seasonal cycle time scales are compara-

ble, meaning that the effective wm annual cycle will be moderately

7 Hill et al. (2021) report values for ca of 1.0, 1.7, and 2.1 for the
Faulk et al. (2017), Singh (2019), and Hill et al. (2021) simulations,
respectively, but these implicitly incorporate the 221/3 ≈ 0.8 factor
in (13). We separate it out from ca for better consistency with (13).
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damped and phase lagged from the insolation. Cf. the appendix

below, this yields a damping factor to wm of a/
���������
11 a2

√
≈ 0:55

and a lag of tlag  v21
orb arctan(a21) ≈ 57days: roughly, the effec-

tive wm is damped by half and delayed by two months. These

values will prove fairly accurate in predicting wa in the simula-

tion discussed next, albeit with the lag empirically reduced

by ∼20%, to 45 days, for a best fit.

For the time scale of wd relative to the seasonal cycle, we

proceed much more empirically. Insofar as wd is determined

by the combination of wa and Ro as we have posited, one rele-

vant time scale is that of the upper-level zonal wind adjust-

ment: it takes a finite amount of time for the zonal winds in

the descending branch to adjust to a change in wa in the oppo-

site hemisphere. The other is the time scale of changes in Ro;

however, we lack clear intuition for what controls Ro and

thus this time scale (see the discussion below for some specu-

lation); moreover a time-invariant Ro seems to fit the simula-

tion well as shown below. We find empirically that the best fit

to the simulated wd occurs by lagging our predicted wd based

on the contemporaneous Ro and wa by roughly one month,

which seems not radically too long nor short.

4. Simulation results

We now assess these theoretical arguments against simula-

tions in three idealized GCMs. After describing the models

and simulations, we consider the annual cycles of wd and wa in

an Earthlike aquaplanet control simulation, followed by their

behaviors across a wide range of rotation rates in all three

GCMs.

a. Description of models and simulations

Details of the model formulations and simulations are pro-

vided by Hill et al. (2021). Briefly, the dry model (Schneider

2004) approximates radiative transfer via Newtonian cool-

ing, with the equilibrium temperature field that tempera-

tures are relaxed toward being the forcing field from LH88

but maximizing at the North Pole (i.e., setting wm = 908). The

relaxation field is statically unstable, and a simple convective

adjustment scheme relaxes over a fixed time scale the temper-

atures of unstable columns toward a lapse rate of gCd, where

Cd = g/cp is the dry adiabatic lapse rate with cp the specific

heat of dry air at constant pressure, and g = 0.7 mimics the sta-

bilizing effects of latent heat release that would occur in a

moist atmosphere (though the model is otherwise dry). Four

simulations are performed, three with the Dh parameter that

determines the horizontal temperature gradients of the forc-

ing set to 1/15 and with the planetary rotation rate set to

0.25, 1, or 2 3 Earth’s value, and another with Dh = 1/6 and

Earth’s rotation rate. The Dh = 1/6 value is conventional

(LH88), but Hill et al. (2021) show that, for wm = 908, Dh = 1/15

is the best fit to numerically simulated latitude-by-latitude RCE.

The moist simulations are those originally presented by

Faulk et al. (2017) and Singh (2019). The Faulk et al. (2017)

simulations use the idealized aquaplanet model of Frierson

et al. (2006) featuring a slab-ocean lower boundary with a 10-m

mixed layer depth. They are forced either with an annual cycle

of insolation approximating that of present-day Earth or with

insolation fixed at northern summer solstice. The annual

cycle simulations include planetary rotation rates ranging

from 1/32 to 4 3 Earth’s by factors of 2, while the three per-

petual solstice simulations are at 1, 1/8, or 1/32 3 Earth’s

rotation rate. The Singh (2019) simulations use an idealized

aquaplanet close to that of O’Gorman and Schneider

(2008), itself a modified version of the Frierson et al. (2006)

model. All of these simulations use a time-invariant, solsti-

cial insolation forcing as in the second subset of the Faulk

et al. (2017) simulations, with rotation rates ranging from

1/8 to 8 3 Earth’s.

The simulated values of wd are diagnosed conventionally

as the latitude at which the mass-overturning streamfunction

at the level of the cell center reaches 10% of its maximum

value, with an additional cosw weighting factor that accounts

for constricting latitude circles moving poleward (Singh 2019).

The 10% threshold is needed rather than a zero crossing for

cases with large Hadley cells, in which the Ferrel cells and/or

summer Hadley cell can be nonexistent and the streamfunc-

tion same-signed (albeit very weak) all the way to either pole.

For wa, the same 10% threshold is used in the perpetual-

solstice simulations and in the annual cycle simulations for

months in which the summer Hadley cell has effectively van-

ished. In months where both Hadley cells are well defined, wa

is taken as the average of the inner edges of the two cells com-

puted using this 10% criterion (which is approximately the

latitude of the streamfunction zero crossing; not shown).

b. Annual cycles of wa and wd

Before presenting the simulation results, we delineate three

regimes regarding the relative importance of Ro versus wa in

determining wd. First is where Ro predominates: by (12) if wa

is small relative to wRo,ann = (BuDv/Ro)1/4 throughout the an-

nual cycle, then the annual cycle of wd is determined by the

annual cycle of Ro (provided that Dv and H are constant

across seasons). Second is intermediate, with both Ro and wa

influential as in the compensation regarding the winter wd

found by KL12 in CMIP3 simulations: wa is farthest poleward

at solstice, acting to move wd poleward, but Ro is largest in

the solsticial cross-equatorial cell, acting to move the winter

wd equatorward. Third is where wa predominates, as we now

show holds for the seasonally forced simulation at Earth’s

rotation rate of Faulk et al. (2017): wa variations (which are

well predicted by supercriticality provided thermal inertia is

accounted for) with Ro = 1 assumed throughout the annual

cycle account for the annual cycle of the winter wd.

Figure 3 shows the climatological annual cycles of wa (solid

red curve), of wd in both hemispheres (solid blue curves), and

of the meridional overturning streamfunction at 500 hPa

(color shading), as well as theoretical estimates described be-

low for each cell edge. The simulated cells are Earthlike in

their total meridional extent (wd varies over 21.38–27.78N and

21.78–26.58S) and annual cycle phasing, with wa migrating into

either summer hemisphere with a ∼1.5-month lag behind

the insolation. However, the wa excursions are excessive,

25.78S–23.28N, resulting in an excessively rapid transition

from equinoctial to solsticial regimes, approaching closer to
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the square-wave prediction of LH88 for axisymmetric atmos-

pheres than Earth’s more sinusoidal variations (Dima and

Wallace 2003).8 This results in the summer cell being too

weak, such that wd is only well defined in the winter half-

year for either hemisphere (December–May for the Northern

Hemisphere, June–November for the Southern Hemisphere).

These discrepancies seem attributable to the rather shallow

10-m surface mixed layer, which promotes excessive seasonal-

ity (Donohoe et al. 2014; Wei and Bordoni 2018). Neverthe-

less, the variations in wd and wa}in particular that the wd

ranges are comparable to Earth’s and several times smaller

than that of wa}lead us to consider this useful enough for

Earth.

The insolation maximum is near the summer pole during

the core solsticial months and within the tropics otherwise

(yellow stars, lagged by 1 month to ease comparison with wa).

The effective wm accounting for thermal inertia (orange stars)

is damped and lagged from the actual insolation as described

above. wa stays within the tropics always, with wa ≈ wm to a

reasonable degree. The supercriticality scaling (13) yields an

even better prediction (dotted dark red curve), calculated as

follows. Hill et al. (2021) perform a 2D parameter sweep of

wm and Dh to determine best fits of the LH88 thermal forcing

profile against numerical simulations of latitude-by-latitude

RCE under solsticial forcing; for wm ≈ 448 the best fit over the

tropics occurs for Dh = 1/8 (approximately twice that of the

Dh = 1/15 value for wm = 908).9 We therefore take Dh = 1/8.

With Dh set, the proportionality constant ca is left effec-

tively as a fitting parameter, which by eye provides the

best fit for ca ≈ 1.9.10 The prediction is clearly not without

empiricism, but nevertheless, we are pleased with the

overall accuracy against the simulated wa.

We then use this theoretically computed wa as just de-

scribed to predict wd. Due to an inadvertent loss of zonal-

wind data from the Faulk et al. (2017) simulations, we are not

able to directly diagnose Ro. Instead, we assume Ro = 1,

which provided 0 # Ro # 1 yields the equatorward-most pos-

sible wd predictions, all else equal. Even still, this yields a wd

prediction poleward of the simulated wd values (not shown),

which we correct for by setting cd = 0.75 in (15). We then shift

the results later in time by one month, resulting in a fairly ac-

curate fit to the simulations (dotted blue curve). In the con-

cluding section below we provide speculative arguments to

justify this equatorward displacement and 1-month phase lag

of wd compared to wa (which in turn lags the insolation by

∼1.5 months). The wd prediction is only marginally improved

if the actual simulated wa values are used rather than our pre-

dicted wa (not shown).

Because the monthly variations of wd are comparable to

those of the comprehensive GCMs shown by KL12 (�58 about

their annual means), we infer that muted annual cycles of wd

relative to that of wa can emerge via different mechanisms

even restricting to Earthlike conditions. On the one hand are

the comprehensive GCMs analyzed by KL12: the seasonal Ro

values (that KL12 indirectly diagnose as a fitting parameter)

span 0.45–1, and wa presumably varies closer to the real-world

value and thus less than in our aquaplanet simulations. On the

other hand is our aquaplanet simulation: wd variations (pro-

vided cd and the 1-month lag from wa are accounted for)

appear determined almost entirely by the seasonality of wa

with Ro treated as constant.

The theoretical predictions are also relatively insensitive to

a reasonable range of parameter values. By (12), using con-

ventional values of H = 10 km and Dv = 1/8, then for Earth

Bu ≈ 0.46 and BuDv ≈ 0.06. Then varying wa over 08–158, and

Ro over the KL12-reported Ro range of 0.45–1 yields a wd range

of 28.08 to 35.98 (for wa = 0, Ro = 1 and wa = 158, Ro = 0.45,

respectively). Moreover, the wd range is fairly insensitive to

Ro if wa is held fixed and likewise to wa if Ro is held fixed: if
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FIG. 3. In the seasonally forced, Earthlike aquaplanet simulation,
climatological annual cycle of Hadley cell streamfunction at 500 hPa
in shading according to the color bar, as well as Hadley cell edges
and theories for the Hadley cell edges as indicated in the legend.
The effective wm is the effective insolation maximum for that month
given the damping and delaying effects of thermal inertia on the
seasonally varying forcing. The insolation maximum (yellow stars)
is lagged by 1 month from its actual value to facilitate comparison
with wa, and in the 2 months nearest solstice the maximum is near
the summer pole and thus not shown.

8 In fact the annual-mean rainfall and Hadley cells both show a
double ITCZ resulting from this rapid jumping of the ascent fairly
deep into either summer hemisphere (not shown).

9 For the annual-mean rather than solsticial RCE state, Hill
et al. (2020) diagnose a similar Dh ≈ 1/8 value based on numerical
RCE simulations under annual-mean insolation. This value is con-
siderably larger than the solsticial one, which suggests that Dh

would be even larger under equinoctial forcing. But we do not at-
tempt to account for this seasonality in Dh.

10 This value of ca is ∼45% larger than the best-fit value of 1.31
(Hill et al. 2021) for the solsticial wa across the Faulk et al. (2017)
seasonally forced simulations with different rotation rates}a nei-
ther trivial nor order-of-magnitude difference, suggesting that the
proportionality is moderately influenced by different processes in
these two distinct contexts. The 1.9 value is also less than the val-
ues of 2.2 and 2.6 diagnosed across rotation rates for, respectively,
the simulations of Singh (2019) and the dry simulations of Hill et al.
(2021).

H I L L E T A L . 2521OCTOBER 2022

Brought to you by NOAA-GFDL Library | Unauthenticated | Downloaded 09/27/22 12:55 PM UTC



Ro is fixed at unity, the wa = 158 prediction moves equator-

ward only by 1.78, and conversely if wa is at the equator the

Ro = 0.45 prediction moves poleward by only 2.18.

c. Relative behaviors of solsticial wa and wd across

rotation rates

From (13), wa ∝Ro1/3
th , which Hill et al. (2021) show accu-

rately describes the solsticial wa across planetary rotation rates

in the simulations presently under consideration. For wd, by

(11) for small Roth and thus small wa,

wd ≈ c
d

BuDv

Ro

� �1/4

 cd
Roth
Ro

Dv

Dh

" "1/4

, (16)

again incorporating the empirical fitting parameter cd. In

that case, provided Ro does not change appreciably then

wd ∝ Bu1/4 ∼Ro1/4
th , where in this context we can substitute Roth

for Bu since only V is varied and appears identically (as V22)

in the two nondimensional numbers. We now argue that the

idealized GCM simulations reflect this modest 1/3 2 1/4 = 1/12

difference in power-law exponent in Roth for wa versus wd.

Figure 4a shows the winter wd for all the simulations as a

function of Ro1/4
th . For each model, a best-fit line is included of

wd with Ro1/4
th , restricting to simulations in the linear regime of

wd versus Ro1/4
th .11 Overall the simulations follow this scaling

well. Table 1 lists the slope and intercept from the linear

best fits of wd against Ro1/4
th , with the slope amounting to a

best fit for the empirical cd parameter in (15) (at least in the

small-Roth limit). The inferred cd values range from 1.4 for

the Singh (2019) simulations to 0.9 for the Faulk et al.

(2017) perpetual solstice simulations. The value of 1.0 for

the Faulk et al. (2017) seasonal cycle simulations is modestly

higher than the value discussed above of 0.8 for the climato-

logical annual cycle in the Faulk et al. (2017) simulation at

Earth’s rotation rate}opposite to ca, which was larger for the

annual cycle than across rotation rates. The intercepts, which

in theory should be zero, range from 22.48 to 5.68 latitude and

average across the simulation sets to a modest 0.38.

Table 1 includes best-fit power-law exponents for wd and for

wa against Roth computed for each set of simulations by linear

regression in log–log space. For all sets of simulations, the in-

ferred exponent is larger and closer to 1/3 for wa than for wd,

which is closer to 1/4. The dry simulations exhibit the largest ex-

ponents for both, 0.41 and 0.3, respectively, and the Faulk et al.

(2017) seasonally forced and perpetual-solstice simulations,

respectively, give the smallest exponents, 0.28 and 0.21. The

average of the best-fit exponents across the four simulation sets

are nearly identical to the scalings, 0.26 and 0.33.

As Roth increases beyond ∼1, the simulated wd level off,

never exceeding ∼708. The full, non-small-angle expression

(11) solved numerically with wa = 0 and all parameters except

V set to Earthlike values (dotted gray curve) qualitatively

captures this. This contrasts with wa}shown in Fig. 4b as

a function of Ro1/3
th (reproducing Fig. 6 of Hill et al.

2021)}which in the slowly rotating regime is near the sum-

mer pole (Hill et al. 2021). In other words, as rotation rate de-

creases the cross-equatorial Hadley cell becomes increasingly

lopsided, in the slowly rotating regime extending effectively

to the summer pole but not the winter pole. As noted above,

the solutions (11) and (12) for wd always predict |wd| $ |wa|,

and as such to explain the |wd| , |wa| cases we must appeal to

the empirical proportionality constants ca and cd introduced in

(13) and (15) as follows.

FIG. 4. (a) Latitude of the winter hemisphere descending edge of the cross-equatorial Hadley cell, wd, in idealized
aquaplanet simulations of Faulk et al. (2017) and Singh (2019), and in the idealized dry simulations of Hill et al.
(2021) as a function of the thermal Rossby number to the one-fourth power, each signified by different symbols as
indicated in the legend. The solid lines show the linear best fit for wd as a function of Ro1/4

th for the given simulation
set, restricting to Roth , 1, with red, blue, and yellow for the Singh (2019), Faulk et al. (2017), and the Dh = 1/15 dry
simulations, respectively. The dotted gray curve is the numerical solution to (11) with wa = 0 and RoDh/Dv = 1. (b) The
corresponding quantities for the summer, ascending edge wa, with the horizontal axis spacing being Ro1/3

th , and the
dashed gray curve being the numerical solution to the full expression for the extent of supercritical forcing [(b) replicates
Fig. 6 of Hill et al. (2021)].

11 The extents of this linear regime (as well as the individual wa

and wd values) differ appreciably between the two moist models,
which are very similarly formulated, for reasons we do not under-
stand. It spans Roth � 1 for the Singh (2019) simulations vs
Roth � 1:5 for the Faulk et al. (2017) simulations.
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If Ro and the forcing isentropic slope Dv/Dh are both approxi-

mately unity, it can be shown from (13) and (16) that wa = wd

provided that 21/3cd/ca  Ro1/12
th . Table 1 includes the slope and

intercepts of wa against Ro
1/3
th , with the slope amounting to a best

fit for ca/2
1/3 in (13). From Table 1 then, the ratio 21/3 cd/ca takes

values approximately over 0.6–1 in the four simulation sets.

Given the 0.6–1 range for the left-hand side, this yields Roth ≈ 1,

with wd equatorward of wa for larger Roth. This roughly captures

the behavior of the simulations. Of course, the slowly rotating re-

gime with |wa|. |wd| extends beyond the regime where the small-

angle power-law scalings being appealed to are credible, but it

nevertheless begins within the small-angle regime.

The unfilled yellow triangle in Fig. 4 shows the dry, LH88-

forced simulation at Earth’s rotation rate with Dh = 1/6 rather

than Dh = 1/15 as in the other three dry simulations. As is the

case for wa (Hill et al. 2021), wd is somewhat separated from

the power law of the Dh = 1/15 cases. Strictly speaking, in

the wa ≈ 0 limit of (11), wd is independent of Dh. But, while

small, wa Þ 0 in the simulations, and since an increase in Dh

moves wa poleward, it is qualitatively consistent that wd moves

poleward as a result. Given that the annual cycle amounts to a

variation in Dh sinwm, it is worth noting that the slope between

the Dh = 1/15 and Dh = 1/6 cases at Earth’s rotation rate is shal-

lower than that inferred across rotation rates at Dh = 1/15,

which qualitatively coheres with cd being smaller for the an-

nual cycle than across rotation rates in the Faulk et al. (2017)

simulations (Table 1). A caveat, however, is that the deviation

of the Dh = 1/6 case is modest; whether Dh = 1/6 cases at

TABLE 1. Best-fit exponents of power-law scalings for the winter and summer edges of the cross-equatorial solsticial Hadley cell in
each set of simulations, as well as the best-fit slope and intercepts for each simulation set against the theoretical Roth power law. The
slope for wd amounts to an approximation of cd and that of wa an approximation of ca; the latter is reported with the additional 221/3

factor included to facilitate direct comparison with cd. Simulations are restricted to those for which Roth , 2, since the theoretical
predictions of 1/3 and 1/4 for the winter and summer edges, respectively, assume small angle and thus small Roth. The dry LH88-
forced simulations do not include the Dh = 1/6 case. S19 stands for Singh (2019), and F17 stands for Faulk et al. (2017). The last row
lists the diagnosed cd and ca values for the annual cycle in the Faulk et al. (2017) Earthlike simulation.

Winter wd Summer wa

Power cd Intercept Power ca/2
1/3 Intercept

Theory 0.25 } 08 0.33 } 08
S19 0.28 1.4 21.98 0.34 1.8 22.38
F17, seasonal forcing 0.26 0.9 0.28 0.28 1.1 4.08
F17, perpetual solstice 0.21 0.9 5.78 0.30 1.1 4.48
Dry, LH88 forced 0.26 1.3 22.48 0.41 2.1 29.28
F17, annual cycle } 0.8 } } 1.9 }

FIG. 5. Rossby number in the Singh (2019) simulations at the 300-hPa level, computed either conventionally using (3) or the generalized
form (17) that accounts for the tilting of streamlines. Overlaid are the cell edges wa and wd, with2wa also shown to ease comparison of the
relative poleward extents of wa and wd. Rossby number values outside of the Hadley circulation are shown as thinner curves, since they
are less relevant. They are also masked near the equator where division by the Coriolis parameter makes them less meaningful, within
128 on either side for the slowest rotation rate and by 18 less on either side for each subsequent rotation rate.
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different rotation rates or other Dh values would actually yield

a different slope remains an open question.

d. Validity of the uniform-Ro assumption

Finally, we assess the validity of treating the upper-

tropospheric Ro as uniform within each Hadley cell. Figure 5

shows the meridional profile of Ro at 300 hPa in each simula-

tion of Singh (2019), computed both conventionally as (3)

and, following Singh (2019), in a generalized form that incor-

porates vertical advection of angular momentum:

Rogen ≡
1

f
2z 1

v

y

u

p

� �
, (17)

where y is meridional velocity, v is vertical velocity in pressure

coordinates, p is pressure, and all quantities are zonal averages.

This accounts for the considerable tilting of streamlines in the up-

per branch of the cross-equatorial cells [cf. Figs. 3 and 4 of Faulk

et al. (2017), Fig. 7 of Singh (2019), and Fig. 5 of Hill et al.

(2021)], which causes the conventional Ro to deviate from unity

even if streamlines and angular momentum contours are every-

where parallel. Though it is the conventional Ro that appears in

uRo and thus ultimately our expressions for wd, for the simulations

we argue that (17) is more instructive: for the two-layer model of

baroclinic instability utilized, the bulk upper-tropospheric behav-

ior is more relevant than that at any chosen pressure level. And

as streamlines begin tilting toward the surface in the descending

branch, the conventional Ro at any given level decreases, while

the bulk zonal velocities of the upper branch still roughly corre-

spond to the planetary angular momentum values from where

the streamlines exited the boundary layer in the ascending

branch. In other words, along streamlines angular momentum is

nearly conserved (see Fig. 7 of Singh 2019), which the meridional

profile of Ro at a fixed pressure level cannot capture.

The generalized Rossby number is close to unity over a

large fraction of the cross-equatorial Hadley cell extent in all

cases. (Both forms are masked out near the equator, as speci-

fied in the caption, where division by the Coriolis parameter

makes them less physically meaningful.) The difference made

by the vertical advection term is particularly large in the as-

cending branches. For either version, we subjectively identify

two regimes over the descending branch. Slowly rotating cases

have Rogen relatively uniform or even increasing slightly from

the equator to the winter descending edge. More rapidly ro-

tating cases have Rogen decreasing poleward, approaching

zero in the vicinity of the winter descending edge, but there is

considerable scatter in the value of Rogen at the edge. Despite

this variation in the Rossby number across the simulations, it

is evidently small enough that taking the bulk Rogen value as

fixed in our scalings does not introduce major error.

5. Conclusions

a. Summary

We have introduced a unified theory for the latitudes of all

three Hadley cell edges}the equatorward, ascending edge

(wa) shared by the two Hadley cells as well as each cell’s pole-

ward, descending edge (wd)}throughout the annual cycle by

combining two previous theories. First we predict wa using

our recent theory based on the meridional extent of low-

latitude supercritical forcing (Hill et al. 2021). We then essen-

tially plug this wa into the theory for wd based on baroclinic

instability onset of KL12 that uses the seasonally varying wa

and an assumed uniform Rossby number (Ro) within each

Hadley cell’s upper branch. The new theory predicts that wd

is displaced poleward when Ro decreases or as wa moves

poleward, and wa varies with the thermal Rossby number

(Roth) to the one-third power. But in the small-angle limit

reasonable for Earth, the dependence on wa drops out and

the scaling for wd predicts a one-fourth power dependence

on the planetary Burger number, or equivalently on Roth if

only the planetary rotation rate (or any other term appearing

in both Bu and Roth) are varied. The mixed layer’s thermal in-

ertia acts to damp and delay wa relative to the insolation annual

cycle, which we account for via an “effective” forcing annual

cycle based on the formalism of Mitchell et al. (2014).

In an Earthlike, seasonally forced idealized aquaplanet

simulation with a relatively shallow, 10-m mixed layer ocean

depth, wa migrates rapidly to ∼258 into either summer hemi-

sphere, and this seasonal cycle is well captured by the super-

criticality-based scaling. The summer cell is too weak for the

summer wd to be meaningful, but the winter wd varies by only

�58 latitude about its mean position in either hemisphere.

Our combined theory predicting wa and wd captures this be-

havior with Ro kept at unity as in the original H00 model, but

requires in place of Ro variations that the wd prediction be

lagged by 1 month from that of wa}which in turn is lagged

by ∼1.5 months from the insolation.

In simulations across a wide range of planetary rotation

rates in three idealized GCMs, both wd and wa adhere to the

respective power-law exponents predicted by our theory in

the relevant small thermal Rossby number regime. This, com-

bined with a smaller proportionality constant for wd compared

to wa, helps explain why at very slow rotation rates the solsti-

cial Hadley cell ascends essentially at the summer pole but de-

scends considerably equatorward of the winter pole, ∼708,
rather than being roughly symmetric in extent about the equa-

tor as for more rapidly rotating cases including Earth.

b. Discussion

How might a predictive theory for Ro be constructed?

Hoskins et al. (2020) offer an intriguing perspective relating

to the frequency of deep convection in the ascending branch.

They argue that only when convection is sufficiently deep will

there be upper-tropospheric meridional outflow that travels

nearly inviscidly (i.e., with Ro ≈ 1) toward either pole; at

times and longitudes where deep convection is absent, they

argue Ro ≈ 0. Under those conditions, the time-mean,

zonal-mean Ro field becomes a function of the spatial and

temporal occurrence of deep convection in the ascending

branch. This contrasts with the conventional, extratropically

focused approach to Ro, wherein it is controlled by stresses

from subtropical and extratropical eddies propagating into

the deep tropics and breaking (Walker and Schneider 2006;

Schneider 2006).
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Vallis et al. (2015) speculate that Rossby waves are gener-

ated at the latitude of baroclinic instability onset, that these

Rossby waves then propagate equatorward and break, and

that the Hadley cell terminates at this wave-breaking latitude

rather than the instability onset latitude. This equatorward

displacement may relate to our need for the cd , 1 parameter

value to fit the wd annual cycle in the seasonally forced aqua-

planet simulation. And this additional step}with some fi-

nite time scale required for the overall process of Rossby

wave development, propagation, and breaking}could con-

tribute to the lag of wd relative to wa in the Earthlike sea-

sonal cycle simulation. At the same time, across rotation

rates the best fit cd parameters exceed unity in some cases

(Table 1), which is harder to square with this Rossby wave–

based mechanism of Vallis et al. (2015).

The physical credibility of the two-layer model’s critical

shear criterion for baroclinic instability has been fairly ques-

tioned; a series of studies utilize a more comprehensive treat-

ment of baroclinic instability to argue that wd occurs where

the vertical extent of baroclinic eddies spans a sufficient frac-

tion of the troposphere (Korty and Schneider 2008; Levine

and Schneider 2011, 2015). The same studies also incorporate

the influence of moisture on the effective static stability

Dv (Levine and Schneider 2011, 2015).

Though we have relied on Ro being uniform over the upper

branch of each Hadley cell (cf. KL12), the baroclinic instabil-

ity criterion is computed latitude by latitude, and as such

strictly speaking the behavior of Ro equatorward of the insta-

bility onset latitude is irrelevant. This contrasts with the

equal-area model appropriate for axisymmetric atmospheres,

which depends on the meridional integral of the difference

between the RCE and dynamically equilibrated potential

temperature fields over the expanse of the cell. In principle

one could solve the equal-area model with our fixed-Ro

temperature field (6) as a means of indirectly introducing

eddy influences into it.

Under annual-mean forcing in two dry and one moist ide-

alized GCM, Mitchell and Hill (2021) find that wd scales as

V21/3 in all three models. This could be squared with our

V21/4 scaling for wa = 0 if Ro scales as V22/3. By eye from

their Figs. 8 and 10, Ro does indeed follow an exponent close

to this in two of the models}the same dry GCM we use and

the moist GCM used by Faulk et al. (2017). But a simpler dry

dynamical core (Held and Suarez 1994) shows no clear depen-

dence of Ro on V. Mitchell and Hill (2021) also put forward

an “omega governor” mechanism which operates in the case

that static stability and the effective heating (diabatic plus

eddy heat flux convergence) averaged over the descending

branch do not change. Under those conditions, the poleward

extent and mass overturning rate of the Hadley cell must vary

in tandem: the cell weakens if it narrows, and it widens if it

strengthens. Prior to any adjustment by wd, if wa moves pole-

ward then the cell widens, which under the omega governor

would act to strengthen the overturning. One can imagine

that strengthening causing Ro to increase, insofar as parcels

then traverse the upper branch more rapidly and hence are

less exposed to eddy stresses. The increase in Ro would, all

else equal, act to move wd equatorward, countering the direct

influence of wa moving poleward. (This apparently is not im-

portant for the annual cycle simulation discussed above where

Ro = 1 throughout the annual cycle perform suitably.)

The Mitchell et al. (2014) model we use for the effective

forcing annual cycle in the presence of thermal inertia is based

on radiative equilibrium rather than RCE. It also considers

only the equilibration of the ocean surface mixed layer rather

than the coupled near-surface atmosphere–ocean. Cronin and

Emanuel (2013) derive expressions for the time scale of equili-

bration to the RCE state in a coupled ocean–atmosphere col-

umn but do not consider the latitudinally nor seasonally varying

problem. It could be useful to combine these approaches,

ideally arriving at an analytical model for the effective sea-

sonally varying forcing for moist atmospheres.

Our theory could be further tested in numerous ways: against

reanalysis data for the climatological annual cycle of the Hadley

cells, against reanalysis data for interannual variability and

trends, against comprehensive climate model simulations of

global warming (cf. KL12), and against simulations of other ter-

restrial planetary atmospheres. For the global warming problem,

a useful starting point would be diagnosing seasonal, climatologi-

cal best-fit Ro and wa values for each Hadley cell across compre-

hensive GCMs in preindustrial simulations in the CMIP6

archive. These could then be compared to diagnosed wd climato-

logical values in the same simulations and forced changes in

CMIP6 simulations under increased CO2, although care must

be taken in interpreting, e.g., changes in Dh, which is strictly a

parameter of the hypothetical latitude-by-latitude RCE state,

not the dynamically equilibrated state that the archived simu-

lations represent. We look forward to such tests.
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APPENDIX

Model of Effective Insolation Annual Cycle Given

Surface Thermal Inertia

Here we present the analytical model of Mitchell et al.

(2014) for, given nonzero surface thermal inertia, the

“effective” annual cycle of radiative-equilibrium tempera-

tures, which are damped and lagged from the insolation

(see also appendix A of Lee and Mitchell 2021). The nota-

tion and derivations are slightly modified}most notably,
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we use real numbers throughout rather than using complex

numbers to represent annual oscillations}but the model is

ultimately identical to that of Mitchell et al. (2014).

We take insolation S to vary with sin2w from a maximum

latitude wm that varies over the annual cycle:

S(w, t)
S0

 1 1
Ds

3
2 Ds[sin

2w 2 2 sinwm(t)sinw], (A1)

where Ds controls the fractional horizontal gradients in insolation.

At any given time, this expression amounts to the forcing from

LH88 but with the sin2wm term omitted [it is also the same func-

tional form as the seasonally varying Newtonian cooling temper-

ature profile of Schneider and Bordoni (2008)]. Omitting that

term does not alter the gradient-balanced wind and hence the wa

prediction, but it makes the resulting derivations easier.

We then take wm to vary sinusoidally in time:

sin wm = mm,ann sin(vorbt), where vorb is the orbital fre-

quency, t is the time of year relative to boreal fall equinox,

mm,ann = sinwm,ann, with wm,ann = 448 being the annual max-

imum value of wm. Thus,

S(w, t)
S0

 1 1
Ds

3
2 Ds[sin

2w 1 2mm,annsin(vorbt)sinw]: (A2)

As noted by Mitchell et al. (2014), this results in the annual

mean at each latitude being independent of the seasonality

(i.e., of wm and vorb): denoting annual averages by overbars,

we have S/S0  11Ds/32Dssin
2w.

We assume an ocean surface mixed layer of uniform

depth with heat capacity Cml, whose temperature evolution

at each latitude is determined purely by radiative fluxes,

warmed by the seasonally varying insolation, and cooled

by longwave emission:

Cml

dT

dt
 S 2 sT4, (A3)

where s is the Stefan–Boltzmann constant and T is the

mixed layer temperature. This implicitly treats the albedo

as uniformly zero; a uniform, nonzero albedo could be in-

corporated by simply rescaling S0. In the annual average at

each latitude we then have S  sT
4
. Defining T0 ≡ (S0/s)

1/4

and taking Ds ,, 1, this yields the familiar T /T0  11

Dh/32Dh sin
2w (e.g., Held and Hou 1980), having defined

Dh ≡ Ds/4. [Note that S0 and T0 are global parameters

but not the global-mean values; global-mean insolation is

S0(1 1 Ds/3) and global-mean temperature T0(1 1 Dh/3).]

We now split the insolation and surface temperature

into annual-mean and annually varying components at each

latitude: S  S 1 S� and T  T 1 T�. We assume that

T�
/T

�� ��,, 1, such that T4  (T 1 T�)4 ≈ T
4
1 4T

3
T� via Taylor

expansion. Then, defining the thermal inertia time scale, (A3)

becomes

dT
�

dt
1

T
�

tti
 S

�

Cml

: (A4)

We then nondimensionalize (A4), with nondimensional

quantities in hats, as T�  T0T̂ , S�  S0Ŝ, and t  v21
orb t̂. In

that case, (A4) becomes

vorbT0

dT̂

dt̂
1

T0

tti
T̂  S0

Cml

Ŝ: (A5)

Next, we define the ratio of the seasonal time scale to

the thermal inertial time scale as a ≡ (vorbtti)
21. Dividing

through by vorbT0, using S0/T0  sT3
0 , recalling tti  Cml/4sT

3
,

and approximating T ≈ T0, we have

dT̂

dt̂
1 aT̂  a

4
Ŝ: (A6)

Denoting b ≡ 2Dsmm,ann sinw, then Ŝ  2b sin t̂ and thus

dT̂

dt̂
1aT̂  2

ab

4
sin t̂: (A7)

This ordinary differential equation has the solution of

T̂(t)  2
1

4

ab

1 1 a2
[a sin t̂ 2 cos t̂] 1 c exp(2at̂), (A8)

and we set the constant c = 0 since the solution is bounded

for t̂ →2‘. This difference between a sine and cosine of the

same wavelength amounts to a damped and phase-lagged sine

as follows. Denoting the nondimensional phase lag t̂lag, by

trigonometric identity sin(t̂ 2 t̂lag)  cos t̂lag sin t̂ 2 sin t̂lag cos t̂.

Setting this equal to g(a sin t̂ 2 cos t̂), where g is a constant

to be determined, implies sin t̂ lag  g and cos t̂lag  ag, and

therefore that t̂lag  arctan(a21). Then, requiring sin2 t̂ lag 1

cos2 t̂lag  1 yields g  (11 a)21/2. Thus,

T̂(t)  2
1

4

ab
����������
1 1 a2

√ sin(t̂ 2 t̂lag), t̂lag  arctan(a21): (A9)

For large a, thermal inertia is weak relative to the annual

cycle, yielding t̂lag ≈ 0 and a/
���������
11 a2

√
≈ 1: the temperatures

are nearly undamped and in phase and with the insolation.

For a ,, 1, thermal inertia is relatively strong, yielding

t̂lag ≈ p/2 and a/
���������
11 a2

√
≈ a: the temperatures are strongly

damped (by a factor of a) and in quadrature with the

insolation.

Finally, for completeness the dimensional form of the full

seasonally varying, radiative-equilibrium temperature field is

T(t)
T0

 1 1
Dh

3
1 2 3 sin2w 1 6

a
����������
1 1 a2

√ mm,ann sinw sin[vorb(t 2 tlag)]
� �

,

tlag  v21
orb arctan(a21): (A10)
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