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ABSTRACT: How far the Hadley circulation’s ascending branch extends into the summer hemisphere is a fundamental

but incompletely understood characteristic of Earth’s climate. Here, we present a predictive, analytical theory for this

ascending edge latitude based on the extent of supercritical forcing. Supercriticality sets theminimum extent of a large-scale

circulation based on the angular momentum and absolute vorticity distributions of the hypothetical state were the circu-

lation absent. We explicitly simulate this latitude-by-latitude radiative–convective equilibrium (RCE) state. Its depth-

averaged temperature profile is suitably captured by a simple analytical approximation that increases linearly with sinu,

where u is latitude, from the winter to the summer pole. This, in turn, yields a one-third power-law scaling of the

supercritical forcing extent with the thermal Rossby number. In moist and dry idealized GCM simulations under sol-

sticial forcing performed with a wide range of planetary rotation rates, the ascending edge latitudes largely behave

according to this scaling.
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1. Introduction

Why does the shared, ascending edge of Earth’s Hadley

cells sit around 158 latitude in the summer hemisphere, in-

stead of say 1.58 or at the summer pole? Results from ideal-

ized general circulation model (GCM) simulations suggest

that neither limit is as outlandish as may initially seem. For

the former, an O(1) increase in the surface–atmosphere sys-

tem’s thermal inertia time scale leaves the ascending branch

insufficient time to migrate more than a few degrees off the

equator before the insolation maximum moves back toward

the opposite hemisphere (e.g., Donohoe et al. 2014). For the

latter, the insolation distribution that ultimately drives the

general circulation maximizes at the summer pole, and an

O(1) decrease in the planetary rotation rate yields nearly

pole-to-pole solsticial Hadley circulations (e.g., Williams and

Holloway 1982).

Although increasing the system’s thermal inertia (or has-

tening the annual cycle) pulls the solsticial ascending branch

equatorward, decreasing it (or slowing the annual cycle) does

not push the branch much poleward—even in the limit of

time-invariant solsticial forcing (e.g., Faulk et al. 2017,

hereafter F17; Zhou andXie 2018; Singh 2019, hereafter S19).

This suggests the presence of a dynamical constraint ema-

nating from the time-mean forcing at solstice.

Several theories exist of direct or indirect relevance to this

fundamental property of the general circulation, but each is

limited in one or more substantive ways. The energetic

framework for the position of the intertropical convergence

zone (ITCZ; e.g., Kang et al. 2008; Schneider et al. 2014) is

diagnostic1 and not always accurate, even qualitatively (e.g.,

Hill 2019). The solsticial equal-area model of Lindzen andHou

(1988, hereafter LH88) is predictive but inaccurate over much

of the relevant parameter space, even restricting to axisym-

metric atmospheres for which it is strictly applicable (cf. Hill

et al. 2019)—though we will make ample use of the analytical

forcing profile introduced by LH88. A recent theory for the

ascending edge based on slantwise convective neutrality (S19)

is quantitatively accurate across the idealized GCM simula-

tions against which it has been tested, but it is diagnostic. Here,

we will pursue an alternative, predictive theory based on the

extent of supercritical radiative forcing.

A supercritical latitude is one atwhich, supposing no large-scale

overturning circulation existed, the resulting state of latitude-by-

latitude radiative–convective equilibrium (RCE) would possess

impermissible distributions of angular momentum and absolute

vorticity (Plumb and Hou 1992; Emanuel 1995)—that is, distri-

butions that violateHide’s theorem (Hide 1969).2A large-scale

Corresponding author: Spencer Hill, shill@ldeo.columbia.edu

1By diagnostic, we mean that the theory requires knowledge of

one or more fields from the dynamically equilibrated state that is

nominally being predicted. By predictive, we mean that the theory

requires knowledge only of fields related to the forcing, thereby

yielding a true prediction of the dynamically equilibrated state.

Naturally, all else equal, a predictive theory is preferable.
2 Particularly in extratropical contexts, the term ‘‘super-

criticality’’ is sometimes used in reference to the isentropic

slope. In this manuscript, however, supercriticality always re-

fers to Hide’s theorem.
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overturning circulation must therefore span at minimum all

supercritical latitudes (Held and Hou 1980). Recent studies

using idealized dry, axisymmetric (Hill et al. 2019) and moist,

eddying (F17; S19) GCMs explore the qualitative utility of the

supercritical forcing extent as a predictor of the solsticial

Hadley cell extent as planetary rotation rate is varied. But they

fall short of deriving a closed, analytical expression for the

solsticial supercritical forcing extent.

An attractive feature of the supercritical forcing extent is

that its interpretation as setting the minimum extent of a large-

scale circulation holds equally for axisymmetric and zonally

varying atmospheres: by definition, RCE implies the absence

of any large-scale circulation, and therefore over those lati-

tudes where RCE cannot be sustained some circulation has to

emerge. At the same time, it does not specify the nature of the

large-scale circulation that emerges, in particular whether even

Hadley like at all or instead strongly macroturbulent as in the

extratropics. Using the supercritical forcing extent as a theory

specifically for the Hadley cell ascending edge, therefore, en-

tails some additional empirical justification. A more beneficial

corollary of this dynamical agnosticism, though, is that the

supercritical forcing extent’s validity does not depend on the

resulting Hadley cells being in one of the two limiting regimes

of the zonal momentum budget—angular momentum con-

serving or eddy dominated. Such limit-based approaches will

always be incomplete for the simple reason that Earth’s sol-

sticial Hadley cells do not consistently adhere to one or the

other limit (e.g., Schneider 2006; Bordoni and Schneider 2008).

For annual-mean forcing, an analytical expression for the

extent of supercritical forcing has been known for decades

thanks to Held and Hou (1980), who assume an RCE depth-

averaged temperature profile varying simply as sin2u, whereu is

latitude.3For solsticial forcing, then, a natural startingplace is the

analytical RCE profile from LH88 that moves the global maxi-

mum of the RCE temperature field off the equator but retains

the simple sin2u meridional dependence as in Held and Hou

(1980). In fact, a cruder sinu approximation will prove adequate.

This paper addresses these issues by showing that

d conceptually, supercritical forcing extent can constitute a

meaningful theory for the solsticial Hadley circulation as-

cending latitude in zonally varying atmospheres, provided

certain empirical claims are established (section 2);
d the LH88 forcing usefully approximates latitude-by-latitude

RCE under solsticial forcing with respect to fields relevant to

the Hadley cells (section 3);
d a simple, approximate analytical solution exists for the

supercritical forcing extent at solstice based on the LH88

forcing (section 4); and
d the cross-equatorial Hadley cell extent obeys this simple

scaling in previously reported moist idealized GCM simu-

lations as well as newly performed dry idealized GCM sim-

ulations (section 5).

We then discuss how our theory relates to the aforementioned

slantwise convective neutrality diagnostic (section 6) before

concluding with a summary of key results (section 7).

2. Supercritical forcing: Basis and interpretation in

eddying atmospheres

a. Solsticial insolation

Figure 1 shows the diurnally averaged insolation distribution

on the day of boreal summer solstice for Earth’s present-day

orbit (all results are equally applicable to austral summer).

Insolation is zero in the polar night region spanning the win-

ter high latitudes. Moving northward, it increases, reaching

;386Wm22 at the equator, but with steadily decreasing slope

up to a local maximum of ;485Wm22 near 438N. From there

it decreases modestly to a local minimum of;478Wm22 near

628N and finally increases monotonically from there to its

global maximum of ;525Wm22 at the north pole. Figure 1

also shows insolation for longer averaging periods of 30 and

90 days centered on northern summer solstice. Differences

across the three averaging periods are modest.

b. Conceptual basis of supercritical forcing extent

If RCE prevailed at each latitude, then large-scale meridi-

onal and vertical velocities would vanish. The large-scale zonal

velocity field would be in gradient balance (i.e., thermal wind

balance but also including the nonlinear metric term) with the

temperature field that is determined by the interactions be-

tween radiative and convective processes at each latitude.

But this exhibits physically untenable features, most obvi-

ously at the equator where the Coriolis parameter vanishes:

no gradient-balanced solution is attainable with a nonzero

cross-equatorial insolation gradient (which occurs at all times

other than equinox; LH88).

Away from the equator in the summer hemisphere where

RCE temperature increases moving poleward, gradient bal-

ance yields upper-tropospheric easterlies (assuming zonal wind

is small at the surface due to drag) that draw angularmomentum

FIG. 1. Insolation (Wm22) for averaging windows centered on

northern summer solstice of 1, 30, and 90 days. It is computed using

the ‘‘daily_insolation’’ function of the climlab package (Rose

2018), and is based on the methods of Berger and Loutre (1991).

3Of course, in the annual mean the ascending edge will reliably

sit near the equator (potentially as a double ITCZ straddling the

equator), and the utility of the supercritical forcing extent is as a

lower bound for the location of the poleward, descending Hadley

cell edges.
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below its local planetary value. If sufficiently strong, these

easterlies can cause the RCE angular momentum field, denoted

Mrce, to be increasing poleward, thereby changing the sign of

the Mrce meridional gradient and thus of the RCE absolute

vorticity, denoted hrce (Plumb and Hou 1992). Symbolically,

this implies fhrce, 0 (Emanuel 1995), where f[ 2Vsinu is the

planetary vorticity (i.e., the Coriolis parameter) with plane-

tary rotation rate V. That cannot be a time-mean solution for

multiple reasons [see Adam and Paldor (2009) and Hill et al.

(2019) for details]: it implies local extrema in Mrce, which

cannot be sustained in the presence of nonzero viscosity; it is

the sufficient condition for symmetric instability; and, near

the tropopause where vertical velocity vanishes, a change in

sign would require the absolute vorticity to pass through a fixed

point (i.e., where ›thrce5 0) that occurs athrce5 0 in the vorticity

equation. A large-scale circulation must emerge spanning at

minimum all such latitudes, which are referred to as supercritical.

Equivalently, where hrce 5 0 in the summer hemisphere consti-

tutes the minimal extent of the large-scale circulation in that

hemisphere.4

c. Supercritical forcing in eddying atmospheres

Supercritical forcing extent has not figured centrally in

theories for Earth’s solsticial Hadley cell ascending edge for

reasons that seem plausible in passing but that falter under

scrutiny.

First is the notion that supercriticality is meaningful in axi-

symmetric atmospheres only and is in principle inapplicable to

macroturbulent atmospheres. One can see how this would

emerge. Supercriticality (though not referred to as such) was

popularized by Held andHou (1980) as an intermediate step in

developing their highly influential axisymmetric, angular-

momentum-conserving model for the annual-mean Hadley

cells. For solstice, the fhrce , 0 facet was presented by Plumb

and Hou (1992) also in a purely axisymmetric context [though

soon extended to moist, zonally varying contexts by Emanuel

(1995)]. Moreover, the marginally critical state of hrce 5 0

corresponds to uniform Mrce, which, with its homogeneous

angular momentum distribution, might sound like a de-

scription of the axisymmetric (and nearly inviscid) angular-

momentum-conserving model.

But the angular momentum that is spatially homogeneous in

the angular-momentum-conserving model is that of the dy-

namically equilibrated state, M, and crucially Mrce 6¼ M. By

definition, the latitude-by-latitude RCE state is one in which

there is no large-scale circulation, zonally symmetric or oth-

erwise. Irrespective of whether the Hadley cells in the dy-

namically equilibrated state end up perfectly homogenizing

angular momentum, or are totally controlled by eddies, or

(most likely) something in between, latitude-by-latitude RCE

cannot be sustained over any latitude that is supercritically

forced. Therefore, at least in the narrow sense regarding the

minimal extent of a large-scale circulation of some kind, super-

critical forcing extent is meaningful in all rotating atmospheres.

This leads to a second concern: whether in practice the su-

percritical forcing extent usefully predicts, much more specif-

ically, the location of the Hadley cell ascending edge. In

simulations for which supercritical extent has been explicitly

computed, the ascending edge latitude sits poleward of the

hrce 5 0 latitude (F17; Hill et al. 2019; S19).5 As such, to be a

useful predictor, the supercritical forcing extent must scale

proportionally with the actual ascending cell edge latitude. As

section 5 will demonstrate—albeit empirically—this does in

fact hold in a diverse range of idealized GCM simulations.

3. Latitude-by-latitude RCE under solsticial forcing

a. Numerical simulations

We use the climlab single-column model (Rose 2018) to

simulate solsticial latitude-by-latitudeRCE.Each single-column

simulation is forced with insolation corresponding to present-

day, boreal summer solstice at a specified latitude, with the

chosen latitudes in 18 increments spanning from equator to the

pole in the summer hemisphere and from the equator to 558 in

the winter hemisphere. Apart from using solsticial rather than

annual-mean insolation, the setup is identical to that ofHill et al.

(2020), to which readers are referred for more details.

Time-averaged fields from the single-column simulations

are concatenated together in latitude to yield latitude–

FIG. 2. Temperature as a function of latitude and pressure from

the solsticial RCE simulation, as indicated in the color bar. The

gray line at 200 hPa indicates the level at which the temperature is

used to compute the gradient-balanced wind.

4A latitude is also supercritical if Mrce . Va2 or Mrce , 0 (Held

and Hou 1980). But in the summer hemisphere, at least for Earth,

the hrce 5 0 point sits poleward of these conditions, save perhaps

for just after spring equinox when the Mrce 5 Va2 point can be

farther (cf. Figs. 3 and 4 of Hill et al. 2019). Henceforth we take the

summer hemisphere supercritical forcing extent as identical to

where hrce 5 0.

5Earth’s extratropics, which are nominally subcritical by this

definition throughout the annual cycle, obviously are not in a state

of latitude-by-latitude RCE. There, the hypothetical RCE state is

unstable in other ways, of most relevance baroclinically. Such

baroclinic instability—and with it an extratropical dynamical re-

gime—could in principle extend into the supercritically forced

region, pushing the solsticial Hadley cell ascending latitude equa-

torward thereof (much as it limits theHadley descending, poleward

edges; cf. Held 2000; Korty and Schneider 2008; Kang and

Lu 2012).
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pressure distributions of each field. Figure 2 shows the resulting

temperature field T. From the temperature distribution, zonal

wind at each level is inferred by assuming gradient wind balance

and integrating the gradient balance expression from the surface

where u ’ 0 is assumed to the given level:

u(p,u)5Va cosu

2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12
1

cosu sinu

R
d

V
2a2

ln

�

p
s

p

�

›T̂

›u

s

2 1

3

5 ,

(1)

where T̂ is the log-pressure-weighted average temperature

from the surface pressure ps 5 1000hPa to the given pressure p,

andRd is the dry-air gas constant.We restrict attention to values

at a specified tropopause pressure of 200 hPa. Results are qual-

itatively insensitive to reasonable variations in the tropopause

treatment, an issue explored at length by Hill et al. (2020).

From this zonal wind field, the angular momentum and ab-

solute vorticity fields are subsequently calculated. Specifically,

angular momentum is

M5 a cosu(Va cosu1u) , (2)

and absolute vorticity is proportional to the meridional deriv-

ative of absolute angular momentum:

h5
21

a2 cosu

›M

›u
5 f 1 z , (3)

where z 5 2(a cosu)21›u(u cosu) is the relative vorticity.

The solid curves in Fig. 3 show the simulated meridional pro-

files of temperature averaged from the surface to 200hPa and of

the inferred 200-hPa zonal wind, absolute angular momentum,

and absolute vorticity. The depth-averaged temperature field

(shown as a deviation from its 458S–458N mean) retains the ex-

trema locations of the insolation and varies meridionally by

roughly 25K from the equator to the summer pole and 75K from

the equator to the region of polar night. The inferred gradient

wind is westerly throughout the winter hemisphere and asymp-

totes toward infinity approaching the equator; it is undefined in a

narrow range of the summer hemisphere near the equator, pole-

ward of which very strong easterlies gradually weaken, turning to

weak westerlies around 408N. This zonal wind field causes the

angular momentum field to deviate sharply from its planetary

value (overlain in Fig. 3c). Angular momentum is undefined from

the equator to ;58N and increases to a local maximum near

;158N, poleward ofwhich it tends toward the planetary value as u

weakens and the distance from the rotation axis diminishes. The

absolute vorticity field changes sign at the angular momentum

maximum ;158N, and this constitutes the poleward extent of

supercritical forcing in the summer hemisphere.

b. Analytical approximation

We approximate the numerically simulated RCE state using

the equilibrium temperature profile originally presented by

LH88. It is specified in terms of potential temperature aver-

aged at each latitude over the fixed depth H of a Boussinesq

atmosphere and may be written

û
rce

u
0

5 11
D
h

3
[12 3(sinu

m
2 sinu)

2
] , (4)

FIG. 3. In solid red, results from numerical simulations of

latitude-by-latitude radiative–convective equilibrium, compared to

approximations thereto as dashed curves. Dashed yellow corre-

sponds to the analytical forcing profile given by Eq. (4), and dashed

purple corresponds to the further-simplified forcing that is linear

rather than quadratic in sinum 2 sinu. (a) Vertically averaged

temperature or potential temperature, shown as deviation from

458S to 458N mean; (b) gradient-balanced zonal wind at the tro-

popause; (c) absolute angular momentum at the tropopause; and

(d) absolute vorticity at the tropopause.
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where u is potential temperature, the hat denotes a depth av-

erage, u0 is the Boussinesq reference potential temperature, û

maximizes at the latitude um, and Dh is a parameter controlling

(in conjunction with um) the fractional variations in ûrce with

latitude. The ‘‘rce’’ subscript emphasizes that we are treating

(4) as an approximation to the hypothetical latitude-by-

latitude RCE state that would occur absent a large-scale

circulation.

The Boussinesq expression for gradient-balanced zonal

wind at heightH is nearly identical to (1), with Rd ln(p/ps)›uT̂

replaced by (gH/u0)›uû:

u5Va cosu

"
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12
1

cosu sinu

gH

V
2a2u

0

›û

›u

s

2 1

#

, (5)

where g is gravity and the surface zonal wind has been assumed

negligible due to surface friction. We use (4) as û in this ex-

pression to find urce;Mrce and hrce then follow using (2) and (3)

(the corresponding analytical expressions are shown in the next

section).

With g, V, and a set to appropriate Earth values, there are

still four free parameters between (4) and (5), namely, H, u0,

um, andDh—enough to potentially overtune to the numerically

simulated RCE fields of interest. Appendix A details our

procedure for choosing these values; in short, we choose con-

ventional values of H 5 10 km and u0 5 300K and then

perform a two-dimensional parameter sweep over Dh and um

values to find best fits to the simulated RCE temperature field

over 458S–458N (rather than directly for the hrce 5 0 point of

ultimate interest). Fortunately, providedum * 30+, the product

Dh sinum—which will figure centrally in our scaling below—is

nearly constant, provided that for each um one sets Dh to its

best-fit value for that um.

The resulting ûrce, urce, Mrce, and hrce fields with um 5 908N

and Dh5 1/15 are overlain in Fig. 3 as dashed orange curves. In

short, the LH88 forcing approximation captures the numeri-

cally simulated RCE state well throughout most of the domain

of relevance to the Hadley cells. In more detail, the nu-

merically simulated depth-averaged temperature field has

greater meridional curvature than the LH88 forcing ap-

proximation in the extratropics, but at lower latitudes of

more relevance to the Hadley cells the two are nearly co-

incident. The same largely holds for the zonal wind, though

it begins to deviate substantially (*20m s21) from the LH88

forcing approximation by the southern subtropics and de-

viates further poleward thereof. The effect of this is weaker,

however, on the angular momentum and absolute vorticity

fields. In the summer hemisphere the absolute vorticity field

is very accurately captured by the LH88 forcing approxi-

mation deep into the extratropics—including the zero

crossing near ;158N that constitutes the poleward edge of

the supercritical forcing extent.

4. Analytical expression for solsticial supercritical

forcing extent

Inserting (4) into (5) yields the gradient-balanced zonal wind

under LH88 forcing,

u
rce

5Va cosu

"
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11 2Ro
th

�

1

sinu
m

2
1

sinu

�

s

2 1

#

, (6)

where

Ro
th
[

gH

V
2a2

D
h
sinu

m
(7)

is the thermalRossby number. EquivalentlyRoth5BuDh sinum,

where Bu [ gH/(Va)2 is the planetary Burger number. Our in-

clusion of sinum in the thermal Rossby number is nonstandard

andmakes (7) relevant to solsticial seasons only (since sinum5 0

for the equinoctial seasons and the annual mean). It is motivated

by appendix A, which shows that different fits of the LH88

forcing to the solsticial RCE state largely collapse onto a single

value of Dh sinum (for um values outside the tropics, as is

appropriate).

Using (6) in (2) then yields the corresponding absolute an-

gular momentum field,

M
rce

5Va2 cos2u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11 2Ro
th

�

1

sinu
m

2
1

sinu

�

s

, (8)

and similarly using (6) in (3) yields the corresponding absolute

vorticity field:

h
rce

5 2V sinu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11 2Ro
th

�

1

sinu
m

2
1

sinu

�

s

3

2

6

6

4

12
1

2

cos2u

sin3
u

Ro
th

11 2Ro
th

�

1

sinu
m

2
1

sinu

�

3

7

7

5

. (9)

Equation (9) comprises three terms multiplying one another.

The first is simply the local planetary vorticity f, which is ir-

relevant to the zero crossing within the summer hemi-

sphere. The second, the square root term, amounts by (8)

to Mrce/(Va2 cos2u). Its zero crossing corresponds to the

latitude very near the equator where Mrce 5 0. Here urce is

strongly negative, and it becomes less so moving toward um

such thatMrce increases, and thus fhrce , 0, over some span

poleward of this point. Therefore, the actual hrce 5 0 point

in the summer hemisphere always sits poleward of the

Mrce 5 0 point (see Fig. 3a of Hill et al. 2019) and depends

on the third term in (9), i.e., everything within the large

square brackets.

Without approximation, the third term vanishes at the lati-

tude uc satisfying

�

11 2
Ro

th

sinu
m

�

sin3
u
c
2
3

2
Ro

th
sin2

u
c
2

1

2
Ro

th
5 0: (10)

An exact solution to this third-order polynomial in sinuc can be

found using the cubic formula, but its form (not shown) is too

complicated to draw physical insights from. We therefore

pursue an approximate solution as follows. If we assume 0 ,

Roth� sinum# 1 and 0,uc� sinum# 1, thenuc’ sinuc and

to leading order (10) becomes
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u
3
c 2

3

2
Ro

th
u

2
c 2

1

2
Ro

th
5 0: (11)

This is only meaningful if Roth � uc, since Roth ; uc would

lead to a self-contradictory balance between terms of order

Ro3
th with a term of order Roth (or equivalently u3

c with uc).
6

Thus, assuming 0 , Roth � uc � sinum, the approximate so-

lution to (11) is simply

u
c
5

�

Ro
th

2

�1/3

. (12)

According to (12), the solsticial Hadley ascending edge lati-

tude varies with the thermal Rossby number to the one-

third power.

As shown in appendix B, a Ro1/3
th scaling for the supercritical

forcing extent also emerges for any ûrce } (sinum 2 sinu)
n
with

integer n $ 1. That more general solution is

u
c
5

�

nRo
th

4

�1/3

. (13)

This includes the n5 1 case in which the forcing is simply linear

in sinu. This can be seen from the overlain dashed purple

curves in Fig. 3, which are the ûrce, urce, Mrce, and hrce fields

computed with n5 1, um 5 908N, and Dh 5 2/15, i.e., twice the

value used for the n 5 2 case, such that nRoth is the same be-

tween them. Though certainly less accurate than the n 5 2

approximation overall, the n5 1 case captures the numerically

simulated RCE behavior in the tropics suitably. We conclude

that, with respect to the supercritical forcing extent, the ex-

tratropical wiggles and meridional curvature in the tropics of

the solsticial insolation matter little compared to the overall

increase moving toward the summer pole.

Figure 4a shows the supercritical forcing extent, i.e., where

(9) vanishes, solved numerically, if um 5 908 as Roth is varied

over 0 , Roth , 1.5, and Fig. 4b shows the same but with

BuDh 5 0.1 as um is varied from equator to pole. Figure 4 also

shows numerical solutions for the small-angle approximation

(11) and the analytical expression (12). For the given um 5 908

(Fig. 4a), the true zero crossing and the approximation thereto

move poleward monotonically with Roth. The approxima-

tion (12) captures the exact expression reasonably well even

for Roth ; 1, though it is consistently equatorward of the

exact value by a modest degree. Similarly, for a reasonably

Earthlike BuDh ; 0.1, the zero crossing moves poleward

most rapidly as um moves off the equator by a few degrees

and increases more gradually poleward thereof (Fig. 4b). In

the small-angle approximation, for example, the maximum

value of 23.68 occurs for um 5 908, but it is displaced only 28

equatorward thereof for um moved all the way to 558N.

The approximate solution again is accurate though biased

slightly equatorward for large um.

Finally, as noted above the actual solsticial Hadley cell as-

cending edge, ua tends to be displaced poleward of uc by a

constant multiplicative factor. But we do not have a theory for

that factor, which furthermore will prove to vary across ide-

alized GCMs in the simulations in the next section. As such,

from (12) we arrive at a scaling (rather than precise prediction)

for ua:

u
a }Ro1/3

th . (14)

We deem noteworthy and worth future exploration that this

scaling is essentially the same as that derived by Caballero et al.

[2008, cf. their Eq. (56)] for the descending edge in the winter

hemisphere, despite seemingly unrelated sets of assumptions

between the two studies. Specifically, motivated by their nu-

merical, axisymmetric simulations, Caballero et al. (2008) as-

sume that the Hadley cell zonal wind field conserves angular

momentum from the equator to the winter hemisphere de-

scending edge and that the descending edge latitude is pro-

portional to the ascending edge latitude ua; they then use

equal-area arguments to find a one-third power-law scaling

with the thermal Rossby number of the descending edge lati-

tude (and implicitly of ua). We make no assumptions about the

FIG. 4. (a),(b) Supercritical forcing extent under the forcing given by (4) as a function of different parameters,

with the full numerical solution, the small-angle numerical solution, and the analytical solution given by (12) as

indicated in the legend in (b). In (a) um 5 908 and solutions are shown as a function of Roth. In (b) BuDh 5 0.1 and

solutions are shown as a function of um.

6A third mathematically possible case, 0, uc � Roth � sinum,

yields a physically nonsensical result.
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Hadley cell zonal wind field that emerges, with our scaling for

ua emerging instead as where the latitude-by-latitude RCE

absolute vorticity vanishes in the summer hemisphere.

5. Ascending edge latitude in idealized GCM simulations

Among other things, (14) implies ua } V
22/3. Here we

present evidence that this accurately characterizes the moist

idealized GCM simulations originally presented by F17 and

S19 as well as newly performed simulations in an idealized dry

GCM. Each of the three idealized GCMs—the idealized

aquaplanet of Frierson et al. (2006) for F17, the version thereof

as modified by O’Gorman and Schneider (2008) for S19, and

the dry idealized GCM of Schneider (2004)—are widely used

and documented in the literature. As such, we leave details of

model formulation in appendix C and describe here only the

salient properties specific to the simulation sets used here.

a. Description of simulations

For the F17 simulations, insolation follows the present-day

Earth annual cycle, diurnally averaged, using a 360-day cal-

endar. Across the simulations, planetary rotation rate is varied

by factors of 2 from 4 3 to 1/32 3 VE, where VE is Earth’s

value, as well as one with 1/6 3 VE, with all other planetary

parameters taking their standard Earth values. The simulations

are run at T42 horizontal spectral resolution, with 25 levels

unevenly spaced in the s vertical coordinate, and for ten 360-

day years. Results are averaged over the 30 days centered on

northern solstice across the last 8 years.7 Three additional

simulations, at 1, 1/8, and 1/32 3 VE, are forced with time-

invariant solsticial rather than seasonally varying insolation,

and we present averages over the final 8 years of these 10-yr

integrations.

The simulations of S19 were run at T42 spectral horizontal

resolution with 30 unevenly spaced s levels. Rather than sea-

sonally varying insolation, these simulations are forced at all

times by the diurnally averaged insolation occurring at present-

day northern solstice. Planetary rotation rate is varied across

the simulations, one each for 8, 4, 3, 2, 3/2, 1, 3/4, 2/3, 1/2, 1/4,

and 1/8 3 VE. The simulations span 6 3 360 5 2160 days, and

results are averaged over the final 720 days.

In the idealized dry GCM, radiative transfer is approxi-

mated by Newtonian cooling toward a prescribed equilibrium

temperature profile, which thereby defines the hypothetical

latitude-by-latitude RCE temperature field. As such, we set its

meridional structure to be (4), with u0 5 300K, um 5 908 and

Dh5 1/15, the same values as used in section 3. Simulations are

performed with planetary rotation rates of 2, 1, and 1/4 3 VE

with Dh 5 1/15. One additional sensitivity test is performed at

Earth’s rotation rate with Dh 5 1/6 as in LH88 (though the

largest um used by that study was 88). All simulations ran for

1440 days, with averages taken over the final 360 days.We refer

to these as the LH88-forced simulations.

For all simulations, we compute the Hadley cell ascending

edge latitude using the definition of S19, as described in

appendix C. We diagnose Roth for each simulation using the

appropriate value of V, standard Earth values of a and g, and

the sinum 5 1 and Dh 5 1/15 best-fit values inferred from the

latitude-by-latitude RCE simulations. For the approximate

RCE tropospheric depth H, we infer it to be ;10 km for the

F17 and S19 simulations based on the explicit latitude-by-

latitude RCE simulation performed by S19.8 For the LH88-

forced simulations, we infer H directly from the imposed

equilibrium temperature field, yielding ;7 km (not shown).

b. Simulation results

Figure 5 shows the mass overturning streamfunctions from

the four LH88-forced simulations, each normalized by the

solsticial Hadley cell’s overall maximum overturning rate oc-

curring at the cell center. This facilitates comparison of the cell

spatial structures across simulations in the face of large varia-

tions in strength, over an order of magnitude between the

2 3 VE case and the 1 3 VE, Dh 5 1/6 case. In the three Dh 5

1/15 cases, the weakness of the cross equatorial forcing gradi-

ent results in an equatorial jump of near-surface streamlines

out of the boundary layer (cf. Pauluis 2004).

Comparing to the streamfunctions of F17 (their Figs. 3 and

4) and S19 (his Fig. 3), at Earth’s rotation rate there are dif-

ferences in detail, but to first order the simulated cells are

similar. At 1/4 times Earth’s rotation rate, there is more het-

erogeneity across the simulation sets, with the F17 cell ex-

tending the least far poleward and the S19 cell extending the

farthest poleward. Across all the simulations for each model

the cross-equatorial Hadley cell grows as the planetary rota-

tion rate decreases (as was shown by F17 and S19 and as ex-

pected for the LH88-forced simulations).

Figure 6 shows the ascending edge latitude in each simula-

tion as a function of Ro1/3
th . Plotted in this way, simulations that

fall on a straight line, whatever their slope, scale with Ro1/3
th as

(14) predicts. Overlain solid lines correspond to the linear best

fit for each of the three simulation sets, restricted to simula-

tions with Roth , 1 where the small-angle and small-Roth as-

sumptions are plausible (for the LH88 simulations, this also

does not include the outlierDh5 1/6 case, for reasons discussed

below). A Ro1/3
th scaling aptly characterizes each of the simu-

lation sets in the relevant regime—there is only moderate

scatter for each simulation set about its linear best fit. This

includes simulations with Roth ; 1, despite the scaling as-

suming Roth � 1.

The slopes of the linear best fits in (Ro1/3
th , ua) space for the

F17, S19, and LH88-forced simulations are approximately 1.0,

7This deviates from the procedure of F17, who vary their 40-day

solsticial averaging window across simulations based on the sea-

sonal timing of the ITCZ poleward migration into the summer

hemisphere. Results are qualitatively insensitive to this difference

(not shown).

8 Specifically, from Fig. 5 of S19, over the summer hemisphere

latitudes relevant to supercriticality the troposphere-average

temperature (T̂) is ;275 K, and the ratio of the tropopause

and surface pressures (pt/ps) is ;0.35. Ignoring virtual effects,

the hypsometric equation then yields a tropopause height

of H5 (Rd/g)T̂ ln(ps/pt)’ 10 km.
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1.7, and 2.1, respectively (with dimensions radians per Ro1/3
th ).

The corresponding y intercepts (in degrees latitude rather than

radians) are approximately 4, 22, and 211, respectively. Our

scaling (14) is agnostic to the slope but would predict a y in-

tercept of zero. The proportionality constants span from nearly

the lower bound of unity (F17 cases) to a little more than twice

that (LH88-forced cases). By eye from Fig. 6 and given the

limited number of simulations and ambiguities in the estimate

of H, it is not clear how seriously the differences in the y in-

tercepts from zero should be taken.

Unfilled squares in Fig. 6 show ua in the three F17 perpetual

solstice cases. The ascending edge at 1/32 3 VE is nearly

identical for either insolation treatment, but in the 1 3 and

1/8 3 VE time-invariant forced cases ua is a few degrees

poleward from that of corresponding seasonally varying case.

This difference is not large, and the perpetual solstice F17 ua

values still sit equatorward of the corresponding S19 ones. We

lack an explanation for this difference between the perpetual

solstice simulations of F17 and S19, which is somewhat sur-

prising given seemingly modest differences in model formula-

tion. The slope and y intercept of the linear fit for the F17 13

and 1/83VE time-invariant forced cases (1.1 radians per Ro1/3
th

and 48, respectively) are also nearly identical to the annual-

cycle counterparts.

We have also computed best fit power-law exponents by a

standard least squares fit to each simulation set in (logRoth,

logua) space, again restricting to Roth , 1. For the F17, S19,

and Dh 5 1/15 LH88-forced sets, the best fit V exponents are

0.28, 0.34, and 0.41, respectively—all reasonably close to the

1/3 power predicted by (14), and nearly identical to it, at 0.34, in

their average. The exponent inferred for the 13 and 1/83VE

F17 perpetual-solstice simulations is 0.30, slightly closer to the

1/3 value than the 0.28 value from the F17 seasonal cycle

simulations. Again given the uncertainties, this small differ-

ence may or may not be physically meaningful.

FIG. 5. Mass overturning streamfunction normalized by its maximum value in each of the LH88-forced simu-

lations. Each panel corresponds to the simulation as labeled in the panel’s top-left corner, where VE is Earth’s

rotation rate. The blue dot indicates the solsticial cell maximum in the free troposphere, and the adjacent number

indicates the mass overturning strength (109 kg s21) at that point. The vertical solid orange line in each panel is

the simulated ua computed using (C1). The vertical dashed red line is the approximation thereto from a linear

best fit in Ro1/3
th across the three simulations with Dh 5 1/15.

FIG. 6. Cross-equatorial Hadley cell edge in the summer hemi-

sphere in idealized aquaplanet simulations of F17 and S19 and in

the idealized dry simulations of the present study as a function of

the thermal Rossby number to the one-third power, each signified

by different symbols as indicated in the legend. The solid lines show

the linear best fit to ua as a function of Ro1/3
th for the given simu-

lation set, restricting to Roth , 1, with red, blue, and yellow for

the S19, F17, and the Dh 5 1/15 dry simulations, respectively.

The dotted gray curve is the numerical solution to (10).
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Finally, the overlain dotted curve in Fig. 6 shows the nu-

merical solution to the full expression for uc, (10), which does

not assume small Roth or small u. This lower bound qualita-

tively captures the leveling off of ua in the F17 and S19 simu-

lations with large Roth where the cells become nearly pole

to pole.

c. LH88-forced case with Dh 5 1/6

The unfilled triangle in Fig. 6 corresponds to the LH88-

forced simulation at Earth’s rotation rate in which Dh 5 1/6

rather than 1/15 as in the others (but still with um 5 908). The

2.5-times increase in Dh increases Roth accordingly, and the

ascending edge latitude does move poleward, but not enough

to fall along the same scaling as the Dh 5 1/15 cases. This

suggests that modifying Dh at a fixed rotation rate excites one

or more mechanisms that influence ua that the supercritical

forcing extent does not account for. This could constitute an

important limitation to our theory’s applicability to e.g.,

changes under global warming. Adjudicating this would re-

quire additional simulations and analyses beyond the scope of

the present study, but we do speculate on one potential can-

didate, namely, influences of Dh on zonally asymmetric eddy

processes.

In the Dh 5 1/6 case, the northern subtropics to extratropics

exhibit a very long-lasting wave-3 pattern that propagates

westward but persists for hundreds of days (not shown). The

wave is very regular. It spans meridionally over ;208–608N,

and its three centers are located between 308 and 408N. By

contrast, in the Dh 5 1/15 case, the summer hemisphere

zonally asymmetric circulation outside of the tropics is much

more Earthlike, with most commonly a wave-4 structure,

but with individual lows and highs growing, decaying, and

moving relative to each other, while on average being ad-

vected by the mean easterlies (not shown). Such qualita-

tively distinct extratropical circulations in the summer

hemisphere could very well impart very different influences

on the Hadley circulation.

6. Relationship to slantwise convective neutrality

constraint

In a state of slantwise convective neutrality, streamlines,

angular momentum contours, and saturation moist entropy

isolines are all parallel. By assuming this characterizes the

solsticial Hadley circulation, S19 derives a diagnostic for the

ascending edge latitude, which we denote uS19 and can be

written

sin3
u

S19
cosu

S19
5

DT

2V2a2

›s
b

›u

�

�

�

�

uS19

, (15)

where sb is the boundary layer moist entropy, and DT is the

difference between the boundary layer temperature at the

latitude uS19 and the temperature at the equatorial tropo-

pause. This expression corresponds to the latitude uS19

at which an angular momentum contour—and with it a

streamline—that emanates from the boundary layer crosses the

equator at the tropopause, thereby constituting the outermost

streamline of the cross-equatorial Hadley cell, i.e., the ascending

edge ua.

S19 shows that this diagnostic predicts ua with quantitative

accuracy across his simulations. We showed above that in

those same simulations ua }uc ;Ro1/3
th ;Bu1/3, where replac-

ing Roth with Bu is justified since all parameters other than V

are constant. Assuming that the stratification in low latitudes

will be nearly moist adiabatic, we can approximate the lapse

rate as G 5 gGd, where Gd [ g/cp is the dry adiabatic lapse rate

and g’ 0.7, analogous to the convective adjustment scheme

in the idealized dry GCM above. We further assume that the

tropopause temperature is meridionally uniform (Hill et al.

2020), such that DT in (15) can be replaced with the surface-

tropopause temperature drop in the local column.9 In that

case, we have gH ’ cpDT/g, such that the leading factor on

the rhs of (15) becomes gBu/(2cp). Separately, by definition

sb [ cp lnueb, where ueb is the subcloud equivalent potential

temperature. In the small-angle limit and recalling (12), this

yields

�

u
S19

u
c

�3

5
g

D
h
sinu

m

› lnu
eb

›u

�

�

�

�

uS19

. (16)

Sinceua’uS19 andua}uc in the S19 simulations, and since cp,

g, and Dh are all constants, it follows that the boundary layer

moist entropy gradient at the cell edge is itself constant across

the simulations:

› lnu
eb

›u

�

�

�

�

ua

; constant . (17)

S19 notes that in the small-angle limit ›usbjua
edge must be

small (and thus the cell edge sits near a local sb maximum; cf.

Privé and Plumb 2007), but this does not constrain it to be

constant. We deem this worthy of future study. One po-

tentially important distinction between the slantwise con-

vective neutrality diagnostic and our supercriticality-based

theory is that Dhsinum appears in the latter but not the for-

mer. This is as it should be, since Dhsinum characterizes the

RCE state which the supercriticality depends on, while the

slantwise convective neutrality diagnostic is a statement

about the dynamically equilibrated state. In other words,

uS19 } Bu1/3, whereas uc } Ro1/3
th . Nevertheless, Dh sinum

likely does indirectly affect the slantwise convective neu-

trality by influencing sb.

Separately, F17 show that the latitude of the ITCZ, defined

as the latitude of maximum zonal-mean precipitation, in their

seasonal-cycle simulations scales as V
20.63, very close to

the V
22/3 scaling predicted by (12) (cf. their Fig. 6). This

ITCZ latitude is equatorward of the cell edge (cf. their

Fig. 5) and could in principle exhibit a unique scaling with

9 In equating the tropopause depth in the uS19 expression—which

corresponds to the dynamically equilibrated state—with that in the

uc expression—which corresponds to the latitude-by-latitude RCE

state—we are implicitly assuming that the emergence of the cir-

culation does not substantially change this depth.
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Roth to that of the cell edge. Instead, evidently these hy-

drological and dynamical markers of the ascending branch

position vary in proportion to one another and, in turn, the

supercritical forcing extent.

7. Summary

We have presented a new theory for the latitude of the as-

cending edge of Earth’s Hadley circulation during solsticial

seasons and tested the theory’s predictions against simulations

in idealized GCMs. The theory posits that the ascending edge

latitude is determined by the meridional extent of supercritical

forcing. A supercritically forced latitude is one at which, sup-

posing no large-scale overturning circulation existed, the re-

sulting state of latitude-by-latitude RCE would generate

time-mean distributions of angular momentum and/or abso-

lute vorticity that are impermissible. It directly follows that a

large-scale circulation must exist that spans at the very least

all latitudes that are supercritically forced. The resulting

overturning circulation, however, can and typically does

span poleward of this lower bound, leading to our empirical

ansatz that the ascending edge latitude is proportional to the

supercritical forcing extent. Despite this empiricism, we ar-

gue that the resulting theory—which is predictive and

largely accurate with respect to the simulations we test it

against—offers advantages over other existing theories rele-

vant to the problem.

We use a single-column model to simulate RCE at in-

dividual latitudes under Earth’s present-day solsticial in-

solation, and by concatenating the simulations together we

infer gradient-balanced zonal wind, angular momentum,

and absolute vorticity distributions. We then use a simple

analytical expression (4), originally from LH88, to ap-

proximate the simulated RCE depth-averaged tempera-

ture field as quadratic in sinu with its maximum located

in the summer hemisphere. The resulting expression for

the absolute vorticity zero crossing, i.e., the supercritical

forcing extent, can be solved analytically in the Earth-

relevant limit. The solution states that the ascending edge

latitude is proportional to Ro1/3
th . The solution is also un-

changed if the RCE depth-averaged temperatures vary

linearly in sinu (or any positive integer power in sinu, for

that matter) rather than quadratically. This indicates that

in the Earthlike regime the dominant influence on the su-

percritical forcing extent is the linear portion of the forcing

in sinu, i.e., the overall increase from the equator toward

the summer midlatitudes.

We examine the ascending edge latitude in simulations

performed in two variants of an idealized, moist GCM and an

idealized dry GCM, across each of which planetary rotation

rate is varied. Under solsticial conditions, in each model the

cross-equatorial Hadley cell expands meridionally as the ro-

tation rate decreases, and for diagnosedRoth values up to order

unity, this expansion follows the Ro1/3
th scaling predicted by our

approximate solution. Simulations with very slow rotation

rates and thus large Roth values deviate from the scaling, but

in a way that qualitatively resembles the more general solution

(solved numerically).

Future work could further test the predictions of our scaling

(14). In particular, simulations varying parameters other than

the planetary rotation rate that appear in the thermal Rossby

number would be valuable. It is conceivable that changes in

planetary radius, the gravitational constant, or tropopause

height could induce processes not incorporated into the scaling

that cause the solsticial Hadley cell ascending edge to deviate

from the Ro1/3
th prediction. This concern is even more acute for

the RCE bulk fractional temperature gradient Dh, given that

the LH88-forced simulation with Dh 5 1/6 rather than 1/15

appeared to deviate somewhat from the rest of the LH88

simulations.

We do not rest satisfied with a theory whose accuracy

is qualitative, whose justification is semiempirical, and whose

strict interpretation is as a lower bound rather than a precise

prediction. We do consider it a useful step forward.
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APPENDIX A

Choice of Free Parameters in the LH88 Forcing

Approximation

For a wide range of um values spanning from the subtropics

to the summer pole, reasonably accurate approximations to the

numerical RCE simulations (at least with respect to the fields

of relevance to supercritical forcing) can be found by tuning the

value of Dh. We perform a two-dimensional parameter sweep

of (4), for 18# um # 908 in 0.18 increments and 0.01# Dh# 0.3

in 0.01 increments. For each profile, we compute ›uûrce and

compare it to the corresponding ›uT̂ value from the numer-

ical RCE simulations over the latitudes 458S–458N, selecting

for each um the Dh value that minimizes the root-mean-

square error.

Figure A1 summarizes the results of these calculations,

showing as a function of um the minimum root-mean-square

error, the corresponding Dh value, the corresponding value of

the product Dh sinum, and the corresponding supercritical ex-

tent. The error in the analytical meridional temperature gra-

dient field relative to the simulated one over 458S–458N is

minimized for um 5 368 with Dh ’ 0.145 ’ 1/7. Moving

equatorward thereof, the best-fit Dh increases, and the error

metric increases considerably. Moving poleward thereof, the

best-fit Dh decreases, and the error metric levels off at only

slightly higher values.

This decrease in the best-fit Dh value as um is increased leads

to the product Dh sinum remaining remarkably constant across

the profiles with um $ 368. This is important, because sinum
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only appears multiplied by Dh in the analytical expressions

shown below for the supercritical forcing extent (though Dh

separately appears on its own). In other words, the LH88 ap-

proximations to the true RCE state, which might otherwise

seem degenerate inum andDh, effectively collapse into a single

solution in Dh sinum space, at least with respect to the super-

critical forcing extent.

APPENDIX B

Absolute Vorticity Zero Crossing for ûrce Being an

Arbitrary Polynomial in sinu2 sinum

Let the RCE depth-averaged potential temperature field

take the form

û

u
0

5 c
0
2 c(sinu2 sinu

m
)
n
, (B1)

where n is a positive integer and c0 and c are constants.

For example, (4) is the special case of (B1) with n 5 2,

c0 5 11Dh/3, and c 5 Dh. Using (B1) with (6), (8), and (9)

yields the corresponding gradient-balanced zonal wind, abso-

lute angular momentum, and absolute vorticity fields. After

introducing ~R[ cBu (in analogy to Roth 5 DhBu), and for

notational compactness m [ sinu and mm [ sinum, these are

u5Va cosu

2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12n ~R
(m2m

m
)n21

m

s

2 1

3

5 , (B2)

M5Va2 cos2u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 n ~R
(m2m

m
)
n21

m

s

, (B3)

and

h5 2V sinu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12n ~R
(m2m

m
)
n21

m

s

3

"

11
n ~R

4
cos2u

(m2m
m
)
n22

m2

(n2 2)m1m
m

m2nR(m2m
m
)
n21

#

. (B4)

Setting the last, square-bracketed term of (B4) equal to zero

yields, after some manipulation,

m3
2n ~Rm2(m2m

m
)
n21

1
n ~R

4
cos2u[(n2 2)m2m

m
](m2m

m
)
n22

5 0: (B5)

Now consider the small-u, small- ~R limit. Without loss of gen-

erality, we can set mm 5 1, because as described in section 3 for

the n 5 2 case, an accurate fit to the actual solsticial insolation

profile can be found for any extratropicalum value by adjusting

the value of c. We then have

u
3
2n ~Ru2(u2 1)n21

1
n ~R

4
[(n2 2)u2 1](u2 1)n22

5 0: (B6)

The left-hand side comprises the sum of three terms. In the
~R � u� 1 limit considered in the main text for the n5 2 case,

to lowest order the three terms are of magnitude u3, ~Run11,

and ~R, respectively. Since ~R � u, for n$ 1 we have ~Ru2 � u
3,

and therefore the leading-order balance is between the first

and third terms:

FIG. A1. Results from two-dimensional parameter sweep of

(4), in um and Dh, with respect to the accuracy of the fit to the

meridional temperature derivative field over 458S–458N from

the numerical simulations of solsticial RCE. (a) The minimum

root-mean-square error (RMSE) obtained as a function of um.

(b) The Dh value corresponding to that minimum RMSE value.

(c) The product Dh sinum using those values. (d) The latitude

where hrce 5 0 using those values.
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APPENDIX C

Formulation of Idealized GCMs Used

The simulations of F17 were performed in the Frierson et al.

(2006) idealized aquaplanet GCM. This model’s spectral dy-

namical core solves the primitive equations on the sphere with

no topography and a water-covered surface. The sigma vertical

coordinate is defined according to the local surface pressure,

s 5 p/ps. Simplified gray radiative transfer is used with a pre-

scribed, time-invariant, meridionally uniform longwave optical

depth field, no shortwave absorption in the atmosphere, and a

prescribed, uniform surface albedo. Surface turbulent fluxes of

latent heat and sensible heat are calculated via standard bulk

aerodynamic formulas. The surface approximates the ther-

modynamic effects of the ocean’s upper, well-mixed layer. Its

temperature tendency is determined by the net downward ra-

diative plus turbulent flux into the surface along with the pre-

scribed heat capacity, which corresponds to a water depth of

10m. There is no prescribed ocean heat flux divergence

(i.e., ‘‘Q flux’’).

Moist convection is parameterized using the convective

adjustment scheme of Frierson (2007), based on so-called

Betts–Miller schemes (Betts 1986; Betts and Miller 1986),

that relaxes the humidity and temperature profiles of con-

vectively unstable columns toward a moist adiabat with a

prescribed 70% relative humidity over a fixed 2-h time scale.

Neither water vapor nor cloud radiative feedbacks operate, the

former because the prescribed longwave optical depth field

does not depend onwater vapor. The latter is because there are

no clouds—liquid water generated either through the convec-

tive parameterization or by gridscale saturation is immediately

precipitated out to the surface.

We refer readers to F17 and Frierson et al. (2006) for further

details on the model formulation. We refer readers to S19,

Frierson et al. (2006), and O’Gorman and Schneider (2008) for

further details on the model formulation.

We perform additional simulations in the dry idealized

GCM of Schneider (2004). This model uses the same spectral

dynamical core as the moist simulations just described, with

horizontal resolution T85 and 20 unevenly spaced sigma levels.

The vertical dependence of its Newtonian relaxation temper-

ature field approximates the radiative equilibrium temperature

profile of a semigray atmosphere in the troposphere, and it

more crudely represents the stratosphere as an isothermal

layer of 200K extending to the model top. The Newtonian

relaxation time scale is 50 days in the free atmosphere, 7 days at

the surface, and varies linearly in s within the planetary

boundary layer with prescribed top at s 5 0.85.

Within the troposphere, the equilibrium temperature profile

is statically unstable over much of the troposphere, and at each

time step any statically unstable column triggers a convec-

tive adjustment procedure. The convective adjustment relaxes

statically unstable columns over a uniform 4-day time scale

toward a prescribed lapse rate of G 5 gGd, where G is the lapse

rate, Gd 5 g/cp is the dry adiabatic lapse rate, and g 5 0.7. The

g term acts to mimic the stabilizing effects of latent heat release

by moist convection while retaining the simplicity of an oth-

erwise dry fluid. The two dissipative processes are a conven-

tional =8 hyperdiffusion and a quadratic drag on the zonal and

meridional winds within the boundary layer. Additional details

of the model formulation are described by Schneider (2004),

and note that various additionalmodificationsmadebyHill et al.

(2019)—in particular making themodel axisymmetric—are not

employed in the present study.

For all simulations, we diagnose the ascending edge lati-

tude as follows. Denoting the meridional mass overturning

streamfunction C(u, s), its maximum value above the

boundary layer (i.e., at the Hadley cell center)Cmax, and the

sigma level and latitude of Cmax as smax and umax, respec-

tively, ua is the latitude in the summer hemisphere satisfying

C(u
a
,s

max
)

cosu
a

5a
C

max

cosu
max

, (C1)

where a5 0.1. Apart from the cosine factors, this is equivalent

to the standard edge definition based on where the stream-

function drops below the specified fraction a (set here, as

typical, to 0.1) of its maximum value at the level of that max-

imum (e.g., Walker and Schneider 2006); using a small but

nonzero fractional threshold is needed for cases in which a

nonglobal Hadley cell emerges, but a Ferrel cell does not,

leading to the streamfunction retaining its sign all the way to the

pole. The cosine terms act as weights accounting for the de-

creasing circumference of latitude circles moving poleward. It

yields cell edges farther poleward than the conventional defini-

tion, the more so the larger the cell, but results are qualitatively

insensitive to whether this weighting is applied (not shown).
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